Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture.
暂无分享,去创建一个
Two types of pure palladium (Pd) nanowires, differentiated by microstructure, were electrodeposited: (1) nanocrystalline Pd nanowires (grain diameter approximately 5 nm, henceforth nc5-Pd) and (2) nanocrystalline Pd nanowires with a grain diameter of 15 nm (nc15-Pd). These nanowires were evaluated for the detection of hydrogen gas (H(2)). Despite their fundamental similarities, the behavior of these nanowires upon exposure to H(2) was dramatically and reproducibly different: nc5-Pd nanowires spontaneously fractured upon exposure to H(2) above 1-2%. Fractured nanowires continued to function as sensors for H(2) concentrations above 2%, actuated by the volume change associated with the alpha to beta phase transition of PdH(x). nc15-Pd nanowires, in contrast, withstood repeated exposures to H(2) up to 10% without fracturing. nc15-Pd nanowires showed a rapid (2 s at 10%) increase in resistance in the presence of H(2) and a response that scaled smoothly with [H(2)] spanning 5 orders of magnitude down to 2 ppm.
[1] F. A. Lewis,et al. The Palladium-Hydrogen System , 1967, Platinum Metals Review.
[2] W. A. Oates,et al. The Palladium-Hydrogen System , 1991 .
[3] L. Kahlenberg,et al. On Palladium‐Hydrogen , 1935 .