Super-resolution microscopy and studies of peroxisomes

Abstract Fluorescence microscopy is an important tool for studying cellular structures such as organelles. Unfortunately, many details in the corresponding images are hidden due to the resolution limit of conventional lens-based far-field microscopy. An example is the study of peroxisomes, where important processes such as molecular organization during protein important can simply not be studied with conventional far-field microscopy methods. A remedy is super-resolution fluorescence microscopy, which is nowadays a well-established technique for the investigation of inner-cellular structures but has so far to a lesser extent been applied to the study of peroxisomes. To help advancing the latter, we here give an overview over the different super-resolution microscopy approaches and their potentials and challenges in cell-biological research, including labelling issues and a focus on studies on peroxisomes. Here, we also highlight experiments beyond simple imaging such as observations of diffusion dynamics of peroxisomal proteins.

[1]  T. Rapoport,et al.  PEX5 translocation into and out of peroxisomes drives matrix protein import. , 2022, Molecular cell.

[2]  S. Doose,et al.  Photoswitching fingerprint analysis bypasses the 10-nm resolution barrier , 2022, Nature Methods.

[3]  J. Enderlein,et al.  Fluorescence lifetime DNA-PAINT for multiplexed super-resolution imaging of cells , 2022, Communications Biology.

[4]  Kirti Prakash,et al.  Assessment of 3D MINFLUX data for quantitative structural biology in cells , 2021, bioRxiv.

[5]  Suliana Manley,et al.  Single-molecule localization microscopy , 2021, Nature Reviews Methods Primers.

[6]  Daniel S. Kermany,et al.  Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images , 2021, Nature Biomedical Engineering.

[7]  C. Eggeling,et al.  Diffusion and interaction dynamics of the cytosolic peroxisomal import receptor PEX5 , 2021, bioRxiv.

[8]  Ki Hean Kim,et al.  Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy , 2021, Nature Communications.

[9]  S. Hell,et al.  MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope , 2021, Nature Communications.

[10]  Kirti Prakash At the molecular resolution with MINFLUX? , 2021, Philosophical Transactions of the Royal Society A.

[11]  M. Sattler,et al.  Competitive Microtubule Binding of PEX14 Coordinates Peroxisomal Protein Import and Motility. , 2021, Journal of molecular biology.

[12]  P. Tinnefeld,et al.  Pulsed Interleaved MINFLUX. , 2020, Nano letters.

[13]  C. Eggeling,et al.  Challenges of Using Expansion Microscopy for Super‐resolved Imaging of Cellular Organelles , 2020, Chembiochem : a European journal of chemical biology.

[14]  M. Sauer,et al.  Confocal Fluorescence-Lifetime Single-Molecule Localization Microscopy. , 2020, ACS nano.

[15]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[16]  S. Hell,et al.  Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins , 2020, Proceedings of the National Academy of Sciences.

[17]  Roman Tsukanov,et al.  Wide-Field Fluorescence Lifetime Imaging of Single Molecules. , 2020, The journal of physical chemistry. A.

[18]  M. Sauer,et al.  Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM) , 2020, bioRxiv.

[19]  J. Danzl,et al.  Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens. , 2020, Methods.

[20]  M. Sauer,et al.  Tracking down the molecular architecture of the synaptonemal complex by expansion microscopy , 2019, bioRxiv.

[21]  Abbas Shirinifard,et al.  Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells , 2019, Science.

[22]  J. Lippincott-Schwartz,et al.  ER membranes exhibit phase behavior at sites of organelle contact , 2019, Proceedings of the National Academy of Sciences.

[23]  C. Eggeling,et al.  Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS , 2019, Nature Protocols.

[24]  Marco Castello,et al.  Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo , 2019, Nature Communications.

[25]  M. Sauer,et al.  Super-resolution microscopy demystified , 2019, Nature Cell Biology.

[26]  E. Boyden,et al.  Expansion microscopy: principles and uses in biological research , 2018, Nature Methods.

[27]  A. Ozcan,et al.  Deep learning enables cross-modality super-resolution in fluorescence microscopy , 2018, Nature Methods.

[28]  J. Lippincott-Schwartz,et al.  Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales , 2018, Cell.

[29]  J. Rothman,et al.  Assessing photodamage in live-cell STED microscopy , 2018, Nature Methods.

[30]  D. Peckys,et al.  The 2018 correlative microscopy techniques roadmap , 2018, Journal of physics D: Applied physics.

[31]  Maximilian T. Strauss,et al.  Modified aptamers enable quantitative sub-10-nm cellular DNA-PAINT imaging , 2018, Nature Methods.

[32]  Brian D. Slaughter,et al.  Combined expansion microscopy with structured illumination microscopy for analyzing protein complexes , 2018, Nature Protocols.

[33]  Susan Cox,et al.  Artefact-free high density localization microscopy analysis , 2018 .

[34]  S. Rizzoli,et al.  X10 expansion microscopy enables 25‐nm resolution on conventional microscopes , 2018, EMBO reports.

[35]  J. Bewersdorf,et al.  Biological Insight from Super-Resolution Microscopy: What We Can Learn from Localization-Based Images. , 2018, Annual review of biochemistry.

[36]  S. Thoms,et al.  Super-resolution imaging reveals the sub-diffraction phenotype of Zellweger Syndrome ghosts and wild-type peroxisomes , 2018, Scientific Reports.

[37]  H. Ewers,et al.  Expansion stimulated emission depletion microscopy (ExSTED) , 2018, bioRxiv.

[38]  M. Schrader,et al.  A role for Mitochondrial Rho GTPase 1 (MIRO1) in motility and membrane dynamics of peroxisomes , 2018, Traffic.

[39]  G. Coceano,et al.  Enhanced photon collection enables four dimensional fluorescence nanoscopy of living systems , 2018, Nature Communications.

[40]  Rainer Heintzmann,et al.  Super-Resolution Structured Illumination Microscopy. , 2017, Chemical reviews.

[41]  S. Hell,et al.  Fluorescence nanoscopy in cell biology , 2017, Nature Reviews Molecular Cell Biology.

[42]  Stefan W. Hell,et al.  Adaptive-illumination STED nanoscopy , 2017, Proceedings of the National Academy of Sciences.

[43]  Brian D. Slaughter,et al.  Superresolution expansion microscopy reveals the three-dimensional organization of the Drosophila synaptonemal complex , 2017, Proceedings of the National Academy of Sciences.

[44]  J. Rothman,et al.  A novel physiological role for ARF1 in the formation of bidirectional tubules from the Golgi , 2017, Molecular biology of the cell.

[45]  Michael W. Davidson,et al.  Applying systems-level spectral imaging and analysis to reveal the organelle interactome , 2017, Nature.

[46]  Edward S. Boyden,et al.  Iterative expansion microscopy , 2017, Nature Methods.

[47]  J. Elf,et al.  Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes , 2016, Science.

[48]  H. Hang,et al.  Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells. , 2016, Journal of the American Chemical Society.

[49]  Ricardo Henriques,et al.  Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations , 2016, Nature Communications.

[50]  Edward S Boyden,et al.  Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies , 2016, Nature Biotechnology.

[51]  Gerhard J Schütz,et al.  Varying label density allows artifact-free analysis of membrane-protein nanoclusters , 2016, Nature Methods.

[52]  Johannes B. Woehrstein,et al.  Quantitative Super-Resolution Imaging with qPAINT using Transient Binding Analysis , 2016, Nature Methods.

[53]  Edward S. Allgeyer,et al.  Two-colour live-cell nanoscale imaging of intracellular targets , 2016, Nature Communications.

[54]  Alberto Diaspro,et al.  The 2015 super-resolution microscopy roadmap , 2015, Journal of Physics D: Applied Physics.

[55]  M. Sauer,et al.  Artifacts in single-molecule localization microscopy , 2015, Histochemistry and Cell Biology.

[56]  Jun Hee Kang,et al.  Labeling proteins on live mammalian cells using click chemistry , 2015, Nature Protocols.

[57]  Edward S. Boyden,et al.  Expansion microscopy , 2015, Science.

[58]  Wesley R. Legant,et al.  Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution , 2014, Science.

[59]  Uri Ashery,et al.  Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states , 2014, Nature Communications.

[60]  Jennifer J. Smith,et al.  Peroxisomes take shape , 2013, Nature Reviews Molecular Cell Biology.

[61]  Serge Muyldermans,et al.  Nanobodies: natural single-domain antibodies. , 2013, Annual review of biochemistry.

[62]  A. Moser,et al.  Functions of plasmalogen lipids in health and disease. , 2012, Biochimica et biophysica acta.

[63]  Vishal C. Kalel,et al.  Molecular basis of peroxisomal biogenesis disorders caused by defects in peroxisomal matrix protein import. , 2012, Biochimica et biophysica acta.

[64]  Hari Shroff,et al.  Resolution Doubling in Live, Multicellular Organisms via Multifocal Structured Illumination Microscopy , 2012, Nature Methods.

[65]  H. Ewers,et al.  A simple, versatile method for GFP-based super-resolution microscopy via nanobodies , 2012, Nature Methods.

[66]  Christian Eggeling,et al.  Diffraction-unlimited all-optical imaging and writing with a photochromic GFP , 2011, Nature.

[67]  C. Herrmann,et al.  PEX14 is required for microtubule-based peroxisome motility in human cells , 2011, Journal of Cell Science.

[68]  Thorsten Staudt,et al.  Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy. , 2011, Nano letters.

[69]  B. Warscheid,et al.  RhoA Regulates Peroxisome Association to Microtubules and the Actin Cytoskeleton , 2010, PloS one.

[70]  W. Schliebs,et al.  The peroxisomal importomer constitutes a large and highly dynamic pore , 2010, Nature Cell Biology.

[71]  M. Wilmanns,et al.  Structural basis for competitive interactions of Pex14 with the import receptors Pex5 and Pex19 , 2009, The EMBO journal.

[72]  Philipp J. Keller,et al.  Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy , 2008, Science.

[73]  Michael A Thompson,et al.  Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP , 2008, Nature Methods.

[74]  Alexander R Small,et al.  Theoretical limits on errors and acquisition rates in localizing switchable fluorophores. , 2008, Biophysical journal.

[75]  S. Hell,et al.  Fluorescence nanoscopy by ground-state depletion and single-molecule return , 2008, Nature Methods.

[76]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[77]  M. Gustafsson,et al.  Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. , 2008, Biophysical journal.

[78]  M. Gustafsson,et al.  Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy , 2008, Science.

[79]  E. Betzig,et al.  Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics , 2008, Nature Methods.

[80]  J. Lippincott-Schwartz,et al.  High-density mapping of single-molecule trajectories with photoactivated localization microscopy , 2008, Nature Methods.

[81]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[82]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[83]  E. Manders,et al.  Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging , 2007, Nature Biotechnology.

[84]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[85]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[86]  Christian Eggeling,et al.  Macromolecular-scale resolution in biological fluorescence microscopy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Christian Eggeling,et al.  Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Stefan W. Hell,et al.  Strategy for far-field optical imaging and writing without diffraction limit , 2004 .

[89]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[90]  A. Stemmer,et al.  True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[91]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[92]  C. Seidel,et al.  Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection:  Evidence of Two-Step Photolysis. , 1998, Analytical chemistry.

[93]  Daniel L. Farkas,et al.  Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation , 1993, Nature.

[94]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[95]  Mario Bertero,et al.  Three‐dimensional image restoration and super‐resolution in fluorescence confocal microscopy , 1990 .

[96]  K Weber,et al.  Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[97]  W. Webb,et al.  Fluorescence correlation spectroscopy. II. An experimental realization , 1974, Biopolymers.

[98]  E. Ash,et al.  Super-resolution Aperture Scanning Microscope , 1972, Nature.

[99]  M. Schrader,et al.  The peroxisome: an update on mysteries , 2012, Histochemistry and Cell Biology.

[100]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[101]  R. Heintzmann Handbook of biological confocal microscopy , 2006 .

[102]  C. Sheppard Scanning methods in optical microscopy , 1986 .