Isotropic Surface Remeshing Using Constrained Centroidal Delaunay Mesh

We develop a novel isotropic remeshing method based on constrained centroidal Delaunay mesh (CCDM), a generalization of centroidal patch triangulation from 2D to mesh surface. Our method starts with resampling an input mesh with a vertex distribution according to a user‐defined density function. The initial remeshing result is then progressively optimized by alternatively recovering the Delaunay mesh and moving each vertex to the centroid of its 1‐ring neighborhood. The key to making such simple iterations work is an efficient optimization framework that combines both local and global optimization methods. Our method is parameterization‐free, thus avoiding the metric distortion introduced by parameterization, and generating more well‐shaped triangles. Our method guarantees that the topology of surface is preserved without requiring geodesic information. We conduct various experiments to demonstrate the simplicity, efficacy, and robustness of the presented method.

[1]  Leif Kobbelt,et al.  A remeshing approach to multiresolution modeling , 2004, SGP '04.

[2]  Rémy Prost,et al.  Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams , 2008, IEEE Transactions on Visualization and Computer Graphics.

[3]  Hao Zhang,et al.  Voronoi-Delaunay duality and Delaunay meshes , 2007, Symposium on Solid and Physical Modeling.

[4]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[5]  Houman Borouchaki,et al.  Surface mesh quality evaluation , 1999 .

[6]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  Hao Zhang,et al.  Delaunay mesh construction , 2007, Symposium on Geometry Processing.

[9]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[10]  Laurent D. Cohen,et al.  Geodesic Remeshing Using Front Propagation , 2003, International Journal of Computer Vision.

[11]  Herbert Edelsbrunner,et al.  Triangulating topological spaces , 1994, SCG '94.

[12]  Alla Sheffer,et al.  Geodesic-based Surface Remeshing , 2003, IMR.

[13]  Craig Gotsman,et al.  Explicit Surface Remeshing , 2003, Symposium on Geometry Processing.

[14]  Alexander I. Bobenko,et al.  A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..

[15]  LongChen,et al.  OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .

[16]  H.-P. Seidel,et al.  Dynamic remeshing and applications , 2003, SM '03.

[17]  Michael Holst,et al.  Efficient mesh optimization schemes based on Optimal Delaunay Triangulations , 2011 .

[18]  Pierre Alliez,et al.  Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation , 2009, ACM Trans. Graph..

[19]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.

[20]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[21]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[22]  LiuYong-Jin,et al.  Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces , 2011 .

[23]  Tamal K. Dey,et al.  Polygonal surface remeshing with Delaunay refinement , 2010, Engineering with Computers.

[24]  Siu-Wing Cheng,et al.  Edge flips and deforming surface meshes , 2011, SoCG '11.

[25]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[26]  Dong-Ming Yan,et al.  Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.

[27]  Yan Fu,et al.  Direct sampling on surfaces for high quality remeshing , 2008, SPM '08.

[28]  Joshua A. Levine,et al.  Localized Delaunay Refinement for Sampling and Meshing , 2010, Comput. Graph. Forum.

[29]  Simon Fuhrmann,et al.  Direct Resampling for Isotropic Surface Remeshing , 2010, VMV.

[30]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..