Ammonia and Dinitrogen Activation by Surface Organometallic Chemistry on Silica‐Grafted Tantalum Hydrides

Ammonia N–H bond activation and dinitrogen N≡N cleavage with dihydrogen on an isolated metal atom have been achieved with the silica-grafted TaIII and TaV hydrides [(≡SiO)2TaH] (2a) and [(≡SiO)2TaH3] (2b), accessed through surface organometallic chemistry (SOMC). The synthesis of the starting tantalum hydrides 2a and 2b by grafting tris(neopentyl)neopentylidenetantalum(V), Ta(=CH–tBu)Np3, on silica yields well-defined, isolated tantalum atoms. Silsesquioxane molecular modelling shows that the mechanism of the grafting reaction implies a tetraalkyl intermediate [(≡SiO)TaNp4]. The starting hydrides 2a and 2b react stoichiometrically and catalytically with alkanes in reactions such as alkane metathesis, cross-metathesis between ethane and toluene, and methane coupling to form ethane. Mechanistic studies show the relevance of tantalum carbenes and Chauvin-like metallacyclobutane intermediates in most of these reactions. Finally, the stoichiometric N2 cleavage and NH3 activation to the final imido amido tantalum(V) complex [(≡SiO)2Ta(NH)(NH2)] (3) are reviewed and discussed mechanistically. In the N≡N cleavage reaction, dihydrogen adducts on silica-grafted isolated tantalum atoms appear to play a central role. The ammonia reaction occurs by bifunctional activation through the Lewis acid/Lewis base couple formed by a metal centre and a coordinated nitrogen atom, the so-called “NH effect”. Such bifunctional activation is also observed for the heterolytic cleavage of H2 by [(≡SiO)2Ta(NH)(NH2)] (3).

[1]  L. Shimon,et al.  N-H activation of amines and ammonia by Ru via metal-ligand cooperation. , 2010, Journal of the American Chemical Society.

[2]  P. Power,et al.  Reaction of M(II) Diaryls (M = Mn or Fe) with Ammonia to Afford Parent Amido Complexes , 2010 .

[3]  T. Ikariya,et al.  Quest for metal/NH bifunctional bioinspired catalysis in a dinuclear platform. , 2010, Dalton transactions.

[4]  E. A. Quadrelli,et al.  On silsesquioxanes’ accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis , 2010 .

[5]  C. Santini,et al.  Surface Organometallic Chemistry of Hf(CH2tBu)4 on Silica and Silica−Alumina: Reaction of the Resulting Grafted Hafnium Neopentyl with Dihydrogen , 2010 .

[6]  C. Copéret,et al.  Metathesis of alkanes and related reactions. , 2010, Accounts of chemical research.

[7]  C. Copéret C-H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces. , 2010, Chemical reviews.

[8]  O. Eisenstein,et al.  C-H bond activation in transition metal species from a computational perspective. , 2010, Chemical reviews.

[9]  Zheng Huang,et al.  Efficient Heterogeneous Dual Catalyst Systems for Alkane Metathesis , 2010 .

[10]  J. Schmedt auf der Günne,et al.  Highly stereoselective proton/hydride exchange: assistance of hydrogen bonding for the heterolytic splitting of H2. , 2009, Journal of the American Chemical Society.

[11]  M. Iron,et al.  Metal-ligand cooperation in the trans addition of dihydrogen to a pincer Ir(I) complex: a DFT study. , 2009, Dalton transactions.

[12]  R. McDonald,et al.  Rhodium and iridium amido complexes supported by silyl pincer ligation: ammonia N-H bond activation by a [PSiP]Ir complex. , 2009, Journal of the American Chemical Society.

[13]  E. A. Quadrelli,et al.  H/D Exchange on Silica-Grafted Tantalum(V) Imido Amido [(≡SiO)2Ta(V)(NH)(NH2)] Synthesized from Either Ammonia or Dinitrogen: IR and DFT Evidence for Heterolytic Splitting of D2 , 2009 .

[14]  C. Copéret,et al.  Evaluation of the carbene hydride mechanism in the carbon-carbon bond formation process of alkane metathesis through a DFT study. , 2008, Journal of the American Chemical Society.

[15]  G. Ertl Reaktionen an Oberflächen: vom Atomaren zum Komplexen (Nobel‐Vortrag) , 2008 .

[16]  S. Norsic,et al.  Non-oxidative coupling reaction of methane to ethane and hydrogen catalyzed by the silica-supported tantalum hydride: ([triple bond]SiO)2Ta-H. , 2008, Journal of the American Chemical Society.

[17]  Masato M. Ito,et al.  Catalytic hydrogenation of polar organic functionalities based on Ru-mediated heterolytic dihydrogen cleavage. , 2007, Chemical communications.

[18]  E. A. Quadrelli,et al.  Dinitrogen Dissociation on an Isolated Surface Tantalum Atom , 2007, Science.

[19]  D. Mindiola,et al.  Addition of ammonia, water, and dihydrogen across a single Pd-Pd bond. , 2007, Journal of the American Chemical Society.

[20]  Hongjun Fan,et al.  Intermolecular C−H Bond Activation Reactions Promoted by Transient Titanium Alkylidynes. Synthesis, Reactivity, Kinetic, and Theoretical Studies of the Ti⋮C Linkage , 2007 .

[21]  R. Schrock,et al.  Dramatic improvements of well-defined silica supported Mo-based olefin metathesis catalysts by tuning the N-containing ligands. , 2007, Journal of the American Chemical Society.

[22]  C. Copéret,et al.  Synthesis, characterization and propane metathesis activity of a tantalum-hydride prepared on high surface area "silica supported zirconium hydroxide". , 2007, Dalton transactions.

[23]  E. A. Quadrelli,et al.  Well-defined surface imido amido tantalum(v) species from ammonia and silica-supported tantalum hydrides. , 2007, Journal of the American Chemical Society.

[24]  Glenn J. Sunley,et al.  Silica‐Alumina‐Supported, Tungsten‐Based Heterogeneous Alkane Metathesis Catalyst: Is it Closer to a Silica‐ or an Alumina‐Supported System? , 2007 .

[25]  Glenn J. Sunley,et al.  Alumina supported tungsten hydrides, new efficient catalysts for alkane metathesis , 2006 .

[26]  Jean-Marie Basset,et al.  Von der Olefin‐ zur Alkanmetathese: eine Betrachtung aus historischer Sicht , 2006 .

[27]  Amy H. Roy,et al.  Catalytic Alkane Metathesis by Tandem Alkane Dehydrogenation-Olefin Metathesis , 2006, Science.

[28]  Glenn J. Sunley,et al.  Tantalum hydrides supported on MCM-41 mesoporous silica : Activation of methane and thermal evolution of the tantalum-methyl species , 2006 .

[29]  C. Copéret,et al.  Grafting of [Mn(CH2tBu)2(tmeda)] on silica and comparison with its reaction with a silsesquioxane. , 2005, Chemistry.

[30]  R. Schrock,et al.  Catalytic reduction of dinitrogen to ammonia at a single molybdenum center , 2005, Proceedings of the National Academy of Sciences.

[31]  T. Braun Oxidative Addition von NH3 an einen Übergangsmetallkomplex: ein Schlüsselschritt für die metallvermittelte Derivatisierung von Ammoniak? , 2005 .

[32]  J. Gilbertson,et al.  Reduction of N2 to ammonia and hydrazine utilizing H2 as the reductant. , 2005, Journal of the American Chemical Society.

[33]  Glenn J. Sunley,et al.  Primary products and mechanistic considerations in alkane metathesis. , 2005, Journal of the American Chemical Society.

[34]  R. Henderson Mechanistic studies on synthetic Fe-S-based clusters and their relevance to the action of nitrogenases. , 2005, Chemical reviews.

[35]  Jing Zhao,et al.  Oxidative Addition of Ammonia to Form a Stable Monomeric Amido Hydride Complex , 2005, Science.

[36]  C. Lamberti,et al.  Cu+(H2) and Na+(H2) adducts in exchanged ZSM-5 zeolites. , 2004, Chemical communications.

[37]  C. Copéret,et al.  Molecular Understanding of the Formation of Surface Zirconium Hydrides upon Thermal Treatment under Hydrogen of [(=SiO)Zr(CH 2 tBU) 3 ] by Using Advanced Solid-State NMR Techniques , 2004 .

[38]  Glenn J. Sunley,et al.  Detailed structural investigation of the grafting of [Ta(=CHtBu)(CH2tBu)3] and [Cp*TaMe4] on silica partially dehydroxylated at 700 degrees C and the activity of the grafted complexes toward alkane metathesis. , 2004, Journal of the American Chemical Society.

[39]  M. Walter,et al.  Cross-metathesis between ethane and toluene catalyzed by [([triple bond, length as m-(SiO)(2)TaH]: the first example of a cross-metathesis reaction between an alkane and an aromatic. , 2004, Chemical communications.

[40]  Jean-Marie Basset,et al.  Heterogeneous well-defined catalysts for metathesis of inert and not so inert bonds , 2004 .

[41]  R. Bergman,et al.  Synthesis of an Iron Parent Amido Complex and a Comparison of Its Reactivity with the Ruthenium Analog , 2004 .

[42]  P. Chirik,et al.  Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex , 2004, Nature.

[43]  A. Shilov,et al.  Catalytic reduction of molecular nitrogen in solutions , 2003 .

[44]  M. N. Mikhailov,et al.  Ethane hydrogenolysis on silica-supported tantalum hydride. Quantum-chemical study , 2003 .

[45]  Richard R. Schrock,et al.  Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center , 2003, Science.

[46]  Jean-Marie Basset,et al.  Homogene und heterogene Katalyse – Brückenschlag durch Oberflächen‐Organometallchemie , 2003 .

[47]  J. Basset,et al.  Synthesis, Characterization, and Reactivity of the Highly Unsaturated Silica-Supported Trisiloxy Tantalum: (⋮SiO)3Ta(III) , 2002 .

[48]  J. Bercaw,et al.  Understanding and exploiting C–H bond activation , 2002, Nature.

[49]  E. Prouzet,et al.  Synthesis, Characterization, and Properties of Silica-Supported Trimethylphosphine Disiloxy Tantalum Hydride, (⋮SiO)2TaH(PMe3) , 2001 .

[50]  T. Matsubara Density Functional Study of the Mechanism of C⋮C, O−H, and N−H Bond Activation at the PdX (X = Sn, Si, C) Bonds of the (PH3)2PdXH2Complexes , 2001 .

[51]  S. Macgregor Theoretical Study of the Oxidative Addition of Ammonia to Various Unsaturated Low-Valent Transition Metal Species , 2001 .

[52]  R. Noyori,et al.  Asymmetrische Katalyse mit hinsichtlich Struktur und Funktion gezielt entworfenen Molekülen: die chemo‐ und stereoselektive Hydrierung von Ketonen , 2001 .

[53]  R. Scopelliti,et al.  Dinitrogen Rearranging over a Metal−Oxo Surface and Cleaving to Nitride: From the End-On to the Side-On Bonding Mode, to the Stepwise Cleavage of the N⋮N Bonds Assisted by NbIII-calix[4]arene , 2000 .

[54]  C. Copéret,et al.  Versatility of silica used as a ligand: effect of thermal treatments of silica on the nature of silica-supported alkyl tantalum species , 2000 .

[55]  F. Lefebvre,et al.  Recent applications in catalysis of surface organometallic chemistry , 1999 .

[56]  Jean-Marie Basset,et al.  Metathese von Alkanen: Belege für eine entartete Ethanmetathese an einem Silicat-gestützten Tantalhydrid, das durch Oberflächen-Organometallchemie hergestellt wurde , 1999 .

[57]  V. Dufaud,et al.  Oxide supported surface organometallic complexes as a new generation of catalysts for carbon–carbon bond activation , 1999 .

[58]  J. Basset,et al.  Metathesis of Alkanes Catalyzed by Silica-Supported Transition Metal Hydrides , 1997, Science.

[59]  J. Love,et al.  Transformation of Coordinated Dinitrogen by Reaction with Dihydrogen and Primary Silanes , 1997, Science.

[60]  J. Basset,et al.  Synthesis, Characterization, and Reactivity, in the C−H Bond Activation of Cycloalkanes, of a Silica-Supported Tantalum(III) Monohydride Complex: (⋮SiO)2TaIII−H , 1996 .

[61]  C. Cummins,et al.  Dinitrogen Cleavage by a Three-Coordinate Molybdenum(III) Complex , 1995, Science.

[62]  V. Dufaud,et al.  Surface Organometallic Chemistry of Inorganic Oxides: The Synthesis and Characterization of (.tplbond.SiO)Ta(:CHC(CH3)3)(CH2C(CH3)3)2 and (.tplbond.SiO)2Ta(:CHC(CH3)3)(CH2C(CH3)3) , 1995 .

[63]  J. Bercaw,et al.  Alpha- and beta-migratory insertion and elimination processes for alkyl complexes of permethyl-scandocene and permethyltantalocene , 1987 .

[64]  D. Milstein,et al.  Nitrogen-hydrogen activation. 1. Oxidative addition of ammonia to iridium(I). Isolation, structural characterization and reactivity of amidoiridium hydrides , 1987 .

[65]  J. Bercaw,et al.  Reactions of water and ammonia with bis(pentamethylcyclopentadienyl) complexes of zirconium and hafnium , 1984 .

[66]  R. Schrock,et al.  Multiple metal-carbon bonds. 8. Preparation, characterization, and mechanism of formation of the tantalum and niobium neopentylidene complexes, M(CH2CMe3)3(CHCMe3) , 1978 .

[67]  T. R. Hughes,et al.  Mechanism and poisoning of the molecular redistribution reaction of alkanes with a dual-functional catalyst system , 1973 .

[68]  T. Ikariya,et al.  Bifunctional transition metal-based molecular catalysts for asymmetric C-C and C-N bond formation. , 2009, Chemical record.

[69]  M. N. Mikhailov,et al.  Activation of ethane in the metathesis reaction on silica-supported tantalum hydride: a quantum-chemical study , 2003 .

[70]  C. Copéret,et al.  H/D exchange between CH4 and CD4 catalysed by a silica supported tantalum hydride, (SiO)2Ta–H , 2000 .

[71]  J. Basset,et al.  Activation and functionalisation of the C–H bonds of methane and higher alkanes by a silica-supported tantalum hydride complex , 1995 .

[72]  P. T. Wolczanski,et al.  Ammonolysis of Tantalum Alkyls: Formation of Cubic TaN and a Trimeric Nitride, [Cp*MeTaN]3 , 1990 .