On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface

kbstract In this paper, we look for periodic solutions, with prescribed energy h C R, of Hamilton's equations: (H) a H (x, p), p aH (x, p). ap Ax It is assumed that the Hamiltonian H is convex on R" x R", and that the origin (0, 0) is an isolated equilibrium. It is also assumed that some ball B around the origin can be found such that the energy surface H'(h) lies outside B but inside v'2 B. Under these assumptions, we prove that there are at least n distinct periodic orbits of the Hamiltonian flow (H) with energy level h.

[1]  H. Seifert Periodische Bewegungen mechanischer Systeme , 1948 .

[2]  M. A. Krasnoselʹskii Topological methods in the theory of nonlinear integral equations , 1968 .

[3]  R. Palais Critical point theory and the minimax principle , 1970 .

[4]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[5]  Alan Weinstein,et al.  Normal modes for nonlinear hamiltonian systems , 1973 .

[6]  Jürgen Moser,et al.  Periodic orbits near an equilibrium and a theorem by Alan Weinstein , 1976 .

[7]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[8]  P. Rabinowitz,et al.  Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems , 1977 .

[9]  Paul H. Rabinowitz,et al.  Periodic solutions of hamiltonian systems , 1978 .

[10]  P. Rabinowitz A Variational Method for Finding Periodic Solutions of Differential Equations , 1978 .

[11]  Periodic Solutions of Hamiltonian Equations and a Theorem of , 1979 .

[12]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[13]  Ivar Ekeland,et al.  Hamiltonian trajectories having prescribed minimal period , 1980 .

[14]  Second-Order Evolution Equations Associated with Convex Hamiltonians(1) , 1980, Canadian Mathematical Bulletin.

[15]  Frank H. Clarke,et al.  Periodic solutions to Hamiltonian inclusions , 1981 .