On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface
暂无分享,去创建一个
[1] H. Seifert. Periodische Bewegungen mechanischer Systeme , 1948 .
[2] M. A. Krasnoselʹskii. Topological methods in the theory of nonlinear integral equations , 1968 .
[3] R. Palais. Critical point theory and the minimax principle , 1970 .
[4] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[5] Alan Weinstein,et al. Normal modes for nonlinear hamiltonian systems , 1973 .
[6] Jürgen Moser,et al. Periodic orbits near an equilibrium and a theorem by Alan Weinstein , 1976 .
[7] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[8] P. Rabinowitz,et al. Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems , 1977 .
[9] Paul H. Rabinowitz,et al. Periodic solutions of hamiltonian systems , 1978 .
[10] P. Rabinowitz. A Variational Method for Finding Periodic Solutions of Differential Equations , 1978 .
[11] Periodic Solutions of Hamiltonian Equations and a Theorem of , 1979 .
[12] H. Weinert. Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .
[13] Ivar Ekeland,et al. Hamiltonian trajectories having prescribed minimal period , 1980 .
[14] Second-Order Evolution Equations Associated with Convex Hamiltonians(1) , 1980, Canadian Mathematical Bulletin.
[15] Frank H. Clarke,et al. Periodic solutions to Hamiltonian inclusions , 1981 .