Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes.

[1]  C. Pradier,et al.  Bifunctional Polyoxometalates for Planar Gold Surface Nanostructuration and Protein Immobilization , 2012 .

[2]  A. Pucci,et al.  Plasmonic Enhancement of Vibrational Excitations in the Infrared , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Felix Nippert,et al.  Effect of gap modes on graphene and multilayer graphene in tip‐enhanced Raman spectroscopy , 2012 .

[4]  D. A. Stuart,et al.  Surface Enhanced Raman Spectroscopy: New Materials, Concepts, Characterization Tools, and Applications , 2005 .

[5]  P. Vandenabeele,et al.  Reference database of Raman spectra of biological molecules , 2007 .

[6]  P. Dittrich,et al.  Tip-enhanced Raman spectroscopic imaging of patterned thiol monolayers , 2011, Beilstein journal of nanotechnology.

[7]  C. Pradier,et al.  IR spectroscopy for biorecognition and molecular sensing , 2011 .

[8]  Weitao Su,et al.  Visualizing graphene edges using tip-enhanced Raman spectroscopy , 2013 .

[9]  Garry A. Rechnitz,et al.  Flow injection immunosensing of polycyclic aromatic hydrocarbons with a quartz crystal microbalance , 1999 .

[10]  Jessica A. Weber,et al.  The microRNA spectrum in 12 body fluids. , 2010, Clinical chemistry.

[11]  Zhong-Qun Tian,et al.  Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate. , 2010, Chemistry.

[12]  Norio Miura,et al.  Highly sensitive and interference-free simultaneous detection of two polycyclic aromatic hydrocarbons at parts-per-trillion levels using a surface plasmon resonance immunosensor , 2004 .

[13]  S. Franzen,et al.  Detection of DNA Hybridization on Gold Surfaces by Polarization Modulation Infrared Reflection Absorption Spectroscopy , 2002 .

[14]  Wei Jiang,et al.  Cysteamine-modified silver nanoparticle aggregates for quantitative SERS sensing of pentachlorophenol with a portable Raman spectrometer. , 2013, ACS applied materials & interfaces.

[15]  C. Pradier,et al.  Surface IR applied to rapid and direct immunosensing of environmental pollutants. , 2009, Talanta.

[16]  Francesco De Angelis,et al.  Nano-patterned SERS substrate: application for protein analysis vs. temperature. , 2009, Biosensors & bioelectronics.

[17]  W. Knoll,et al.  Double-layered nanoparticle stacks for surface enhanced infrared absorption spectroscopy. , 2014, Nanoscale.

[18]  R. V. Van Duyne,et al.  Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. , 2012, Nano letters.

[19]  S. Schlücker Surface-enhanced Raman spectroscopy: concepts and chemical applications. , 2014, Angewandte Chemie.

[20]  H. Gremlich,et al.  Infrared and Raman Spectroscopy of Biological Materials , 2000 .

[21]  Nicolas Guillot,et al.  The electromagnetic effect in surface enhanced Raman scattering: Enhancement optimization using precisely controlled nanostructures , 2012 .

[22]  Dong Ha Kim,et al.  Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  V. Stambouli,et al.  New Insights into Surface-Enhanced Raman Spectroscopy Label-Free Detection of DNA on Ag°/TiO2 Substrate , 2014 .

[24]  Satoshi Kawata,et al.  Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes , 2013, Nature Communications.

[25]  Robert C. Tenent,et al.  Characterization of single- and double-stranded DNA on gold surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[26]  J. Aizpurua,et al.  Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. , 2010, Nano letters.

[27]  Lukas Novotny,et al.  Nanoscale vibrational analysis of single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.

[28]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[29]  C. Gómez-Navarro,et al.  Nucleic acid interactions with pyrite surfaces , 2008 .

[30]  F. Keilmann,et al.  Near-field microscopy by elastic light scattering from a tip , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Roshan L. Aggarwal,et al.  Measurement of the absolute Raman scattering cross section of the 1584-cm−1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates , 2009 .

[32]  F. Gu,et al.  Effect of SAM chain length and binding functions on protein adsorption: β-lactoglobulin and apo-transferrin on gold. , 2014, Colloids and surfaces. B, Biointerfaces.

[33]  C. Pradier,et al.  Investigation of an allergen adsorption on amine- and acid-terminated thiol layers: influence on their affinity to specific antibodies. , 2010, The journal of physical chemistry. B.

[34]  Peter Hildebrandt,et al.  Vibrational spectroscopy in life science , 2007 .

[35]  W. R. Premasiri,et al.  Surface-enhanced Raman scattering of whole human blood, blood plasma, and red blood cells: cellular processes and bioanalytical sensing. , 2012, The journal of physical chemistry. B.

[36]  Zhiliang Jiang,et al.  A Sensitive Surface‐enhanced Raman Scattering Method for Determination of Melamine with Aptamer‐modified Nanosilver Probe , 2012 .

[37]  F. Golmar,et al.  Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots , 2012, Nature Communications.

[38]  R. Zenobi,et al.  Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments. , 2013, ACS nano.

[39]  Stanislaus S. Wong,et al.  Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. , 2009, Nature nanotechnology.

[40]  Naomi J. Halas,et al.  Label-free detection of DNA hybridization using surface enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[41]  F. Keilmann,et al.  Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. , 2012, Nano letters.

[42]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[43]  H. P. Lu,et al.  Simultaneous spectroscopic and topographic near-field imaging of TiO2 single surface states and interfacial electronic coupling. , 2011, Nano letters.

[44]  Satoshi Kawata,et al.  A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient , 2014, Nature Communications.

[45]  S. Kawata,et al.  Tip-enhanced Raman spectroscopy for nanoscale strain characterization , 2009, Analytical and bioanalytical chemistry.

[46]  Volker Deckert,et al.  Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. , 2012, Nature nanotechnology.

[47]  François Lagugné-Labarthet,et al.  Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A , 2013, Analytical and Bioanalytical Chemistry.

[48]  S. Kawata Plasmonics for Nanoimaging and Nanospectroscopy , 2013, Applied spectroscopy.

[49]  A. Modak Single time point diagnostic breath tests: a review , 2010, Journal of breath research.

[50]  R. Hillenbrand,et al.  Infrared nanoscopy of strained semiconductors. , 2009, Nature nanotechnology.

[51]  R. Niessner,et al.  Layer-by-layer generation of PEG-based regenerable immunosensing surfaces for small-sized analytes. , 2015, Biosensors & bioelectronics.

[52]  R. V. Van Duyne,et al.  Toward a glucose biosensor based on surface-enhanced Raman scattering. , 2003, Journal of the American Chemical Society.

[53]  Yohannes Abate,et al.  Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy. , 2011, ACS nano.

[54]  T. Kundu,et al.  Surface enhanced Raman spectroscopy of Aurora kinases: direct, ultrasensitive detection of autophosphorylation , 2013 .

[55]  P. Warburton,et al.  Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule. , 2012, Physical review letters.

[56]  J. Popp,et al.  Characterizing cytochrome c states--TERS studies of whole mitochondria. , 2011, Chemical communications.

[57]  M. Chaigneau,et al.  Tip enhanced Raman spectroscopy on azobenzene thiol self-assembled monolayers on Au(111) , 2009 .

[58]  R. Zenobi,et al.  Nanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[59]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[60]  R. Ossikovski,et al.  Depolarization effects in tip-enhanced Raman spectroscopy , 2009 .

[61]  Mato Knez,et al.  Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy , 2013, Nature Communications.

[62]  G. Lefèvre In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. , 2004, Advances in colloid and interface science.

[63]  A. Vallée,et al.  BSA adsorption on aliphatic and aromatic acid SAMs: investigating the effect of residual surface charge and sublayer nature. , 2013, Colloids and surfaces. B, Biointerfaces.

[64]  N. Shah,et al.  Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS) , 2006 .

[65]  B. Desbat,et al.  Investigations at the air/water interface using polarization modulation IR spectroscopy , 1996 .

[66]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[67]  Otto S. Wolfbeis,et al.  Fluorescence Analysis in Microarray Technology , 2005 .

[68]  Thomas W. Kirchstetter,et al.  On-Road Emissions of Particulate Polycyclic Aromatic Hydrocarbons and Black Carbon from Gasoline and Diesel Vehicles , 1998 .

[69]  B. Desbat,et al.  Polarization-Modulated FT-IR Spectroscopy of a Spread Monolayer at the Air/Water Interface , 1993 .

[70]  Tomas Hirschfeld,et al.  Internal Reflection Spectroscopy , 1967 .

[71]  Katrin F. Domke,et al.  In situ discrimination between axially complexed and ligand-free co porphyrin on Au(111) with tip-enhanced Raman spectroscopy. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[72]  Steven G. Johnson,et al.  Meep: A flexible free-software package for electromagnetic simulations by the FDTD method , 2010, Comput. Phys. Commun..

[73]  Richard P Van Duyne,et al.  Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. , 2010, Chemical Society reviews.

[74]  Volker Deckert,et al.  Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. , 2008, Angewandte Chemie.

[75]  Honghong Chen,et al.  Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy. , 2012, Journal of the American Chemical Society.

[76]  George M. Whitesides,et al.  Comparison of the Structures and Wetting Properties of Self-Assembled Monolayers of n- Alkanethiols on the Coinage Metal Surfaces, Cu, Ag, Au' , 1991 .

[77]  S. Maier,et al.  Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. , 2011, Nano letters.

[78]  Renato Zenobi,et al.  Understanding tip‐enhanced Raman spectra of biological molecules: a combined Raman, SERS and TERS study , 2012 .

[79]  H. Hoffmann,et al.  Investigation of the Formation and Structure of Self-assembled Alkylsiloxane Monolayers on Silicon Using In Situ Attenuated Total Reflection Infrared Spectroscopy , 1999 .

[80]  Zheng Guo,et al.  Synthesis of novel decorated one-dimensional gold nanoparticle and its application in ultrasensitive detection of insecticide , 2010 .

[81]  D. A. Stuart,et al.  In vivo glucose measurement by surface-enhanced Raman spectroscopy. , 2006, Analytical chemistry.

[82]  A. Vallée,et al.  Optimizing the immobilization of gold nanoparticles on functionalized silicon surfaces: amine- vs thiol-terminated silane , 2013, Gold Bulletin.

[83]  G G Guilbault,et al.  Disposable amperometric immunosensor for the detection of polycyclic aromatic hydrocarbons (PAHs) using screen-printed electrodes. , 2003, Biosensors & bioelectronics.

[84]  J. Landoulsi,et al.  Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[85]  M. R. Wagner,et al.  Nanoscale imaging of InN segregation and polymorphism in single vertically aligned InGaN/GaN multi quantum well nanorods by tip-enhanced Raman scattering. , 2013, Nano letters.

[86]  W. Knoll,et al.  Silver Surfaces with Optimized Surface Enhancement by Self-Assembly of Silver Nanoparticles for Spectroelectrochemical Applications , 2009 .

[87]  C. Pradier,et al.  A DNA biosensor based on peptide nucleic acids on gold surfaces. , 2007, Biosensors & bioelectronics.

[88]  R. Boukherroub,et al.  PM IRRAS investigation of thin silica films deposited on gold. Part 1. Theory and proof of concept. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[89]  S. Franzen,et al.  Infrared detection of a phenylboronic acid terminated alkane thiol monolayer on gold surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[90]  Steven D. Christesen,et al.  Raman Cross Sections of Chemical Agents and Simulants , 1988 .

[91]  Volker Deckert,et al.  Structure and composition of insulin fibril surfaces probed by TERS. , 2012, Journal of the American Chemical Society.

[92]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[93]  Heinz-Detlef Kronfeldt,et al.  Use of sol-gel techniques in the development of surface-enhanced Raman scattering (SERS) substrates suitable for in situ detection of chemicals in sea-water , 1999 .

[94]  Rongming Wang,et al.  Tip-Enhanced Raman Spectroscopy. , 2016, Analytical chemistry.

[95]  C. Pradier,et al.  Functionalisation of gold surfaces with thiolate SAMs: Topography/bioactivity relationship – A combined FT-RAIRS, AFM and QCM investigation , 2007 .

[96]  R. Briandet,et al.  Detection of pathogenic Staphylococcus aureus bacteria by gold based immunosensors , 2008 .

[97]  Hao Wang,et al.  The chemical origin of enhanced signals from tip-enhanced Raman detection of functionalized nanoparticles. , 2013, The Analyst.

[98]  A. Vaskevich,et al.  Sensitivity and optimization of localized surface plasmon resonance transducers. , 2011, ACS nano.

[99]  Rong Chen,et al.  Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. , 2011, Optics express.

[100]  Nicolas Guillot,et al.  Lithographied nanostructures as nanosensors , 2012 .

[101]  E. Rinnert,et al.  Quantitative SERS sensors for environmental analysis of naphthalene. , 2011, The Analyst.

[102]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[103]  D. Klockow,et al.  Investigation of the Adsorption of Gaseous Aromatic Compounds at Surfaces Coated with Heptakis(6-thio-6-deoxy)-β-cyclodextrin by Surface-Enhanced Raman Scattering , 1999 .

[104]  R. Boukherroub,et al.  Polarization modulation infrared reflection absorption spectroscopy investigations of thin silica films deposited on gold. 2. Structural analysis of a 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[105]  R. Zenobi,et al.  Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates , 2008, Analytical and bioanalytical chemistry.

[106]  R. Hillenbrand,et al.  Infrared spectroscopic near-field mapping of single nanotransistors , 2010, Nanotechnology.

[107]  C. Nauenheim,et al.  Note: tip enhanced Raman spectroscopy with objective scanner on opaque samples. , 2012, The Review of scientific instruments.

[108]  Névine Rochat,et al.  Attenuated total reflection spectroscopy for infrared analysis of thin layers on a semiconductor substrate , 2002 .

[109]  Pablo G. Etchegoin,et al.  Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study , 2007 .

[110]  Ralph G. Nuzzo,et al.  Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers , 1990 .

[111]  E. Engvall,et al.  Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. , 1971, Immunochemistry.

[112]  L N Ovo,et al.  Near-field Raman spectroscopy using a sharp metal tip , 2003 .

[113]  Volker Deckert,et al.  Tracking of nanoscale structural variations on a single amyloid fibril with tip‐enhanced Raman scattering , 2012, Journal of biophotonics.

[114]  G. Socrates,et al.  Infrared Characteristic Group Frequencies , 1980 .

[115]  I. Lednev,et al.  Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. , 2013, The Analyst.

[116]  K. Chittur,et al.  FTIR/ATR for protein adsorption to biomaterial surfaces. , 1998, Biomaterials.

[117]  M. Morris,et al.  Infrared and Raman Spectroscopy , 2000 .

[118]  Hongxing Xu,et al.  Electric field gradient quadrupole Raman modes observed in plasmon-driven catalytic reactions revealed by HV-TERS. , 2013, Nanoscale.

[119]  C. Pradier,et al.  In-depth investigation of protein adsorption on gold surfaces: correlating the structure and density to the efficiency of the sensing layer. , 2008, The journal of physical chemistry. B.

[120]  Gerhard Ertl,et al.  Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. , 2004, Physical review letters.

[121]  Wei Song,et al.  Selective SERS detection of each polycyclic aromatic hydrocarbon (PAH) in a mixture of five kinds of PAHs , 2011 .

[122]  Renato Zenobi,et al.  Characterizing unusual metal substrates for gap‐mode tip‐enhanced Raman spectroscopy , 2013 .

[123]  R. Niessner,et al.  Polyoxometalate nanostructured gold surfaces for sensitive biosensing of benzo[a]pyrene , 2015 .

[124]  G. With,et al.  Tip-Enhanced Raman Spectroscopy and Mapping of Graphene Sheets , 2012 .

[125]  Duncan Graham,et al.  Surface-enhanced Raman scattering , 1998 .

[126]  A. Bouhelier,et al.  Sorting of Enhanced Reference Raman Spectra of a Single Amino Acid Molecule , 2014 .

[127]  Naomi J. Halas,et al.  Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates , 2008 .

[128]  H. Metiu Surface enhanced spectroscopy , 1984 .

[129]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[130]  T. Wandlowski,et al.  ATR-SEIRAS––an approach to probe the reactivity of Pd-modified quasi-single crystal gold film electrodes , 2004 .

[131]  E. Di Fabrizio,et al.  Reflection-mode TERS on Insulin Amyloid Fibrils with Top-Visual AFM Probes , 2012, Plasmonics.

[132]  J. Kauer,et al.  Solid-State, Dye-Labeled DNA Detects Volatile Compounds in the Vapor Phase , 2008, PLoS biology.

[133]  J. Valmalette,et al.  Different longitudinal optical—transverse optical mode amplification in tip enhanced Raman spectroscopy of GaAs(001) , 2010 .

[134]  Zheng Guo,et al.  SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms , 2011 .

[135]  Catalina David,et al.  SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor , 2010, Nanotechnology.

[136]  Achim Hartschuh,et al.  Tip-enhanced near-field optical microscopy. , 2008, Chemical Society reviews.

[137]  C. Domingo,et al.  Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized ag nanoparticles by surface-enhanced Raman scattering. , 2009, Analytical chemistry.

[138]  C. Pradier,et al.  Surface IR immunosensors for label-free detection of benzo[a]pyrene. , 2010, Biosensors & bioelectronics.

[139]  Y. Ozaki,et al.  Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering. , 2010, The Analyst.