Robust Submodular Maximization: A Non-Uniform Partitioning Approach

We study the problem of maximizing a monotone submodular function subject to a cardinality constraint $k$, with the added twist that a number of items $\tau$ from the returned set may be removed. We focus on the worst-case setting considered in Orlin et al., 2016, in which a constant-factor approximation guarantee was given for $\tau = o(\sqrt{k})$. In this paper, we solve a key open problem raised therein, presenting a new Partitioned Robust (PRo) submodular maximization algorithm that achieves the same guarantee for more general $\tau = o(k)$. Our algorithm constructs partitions consisting of buckets with exponentially increasing sizes, and applies standard submodular optimization subroutines on the buckets in order to construct the robust solution. We numerically demonstrate the performance of PRo in data summarization and influence maximization, demonstrating gains over both the greedy algorithm and the algorithm of Orlin et al., 2016.

[1]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[2]  Michel Minoux,et al.  Accelerated greedy algorithms for maximizing submodular set functions , 1978 .

[3]  Amir Globerson,et al.  Nightmare at test time: robust learning by feature deletion , 2006, ICML.

[4]  Andreas Krause,et al.  Near-optimal Observation Selection using Submodular Functions , 2007, AAAI.

[5]  Antonio Torralba,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 80 Million Tiny Images: a Large Dataset for Non-parametric Object and Scene Recognition , 2022 .

[6]  Lisa Fleischer,et al.  Submodular Approximation: Sampling-based Algorithms and Lower Bounds , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[7]  H. B. McMahan,et al.  Robust Submodular Observation Selection , 2008 .

[8]  Hui Lin,et al.  A Class of Submodular Functions for Document Summarization , 2011, ACL.

[9]  Ilija Bogunovic Robust Protection of Networks against Cascading Phenomena , 2012 .

[10]  Pushmeet Kohli,et al.  Tractability: Practical Approaches to Hard Problems , 2013 .

[11]  Andreas Krause,et al.  Submodular Function Maximization , 2014, Tractability.

[12]  Jan Vondrák,et al.  Fast algorithms for maximizing submodular functions , 2014, SODA.

[13]  Jure Leskovec,et al.  Discovering social circles in ego networks , 2012, ACM Trans. Knowl. Discov. Data.

[14]  Matthias Rupp,et al.  Machine learning for quantum mechanics in a nutshell , 2015 .

[15]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[16]  Morteza Zadimoghaddam,et al.  Randomized Composable Core-sets for Distributed Submodular Maximization , 2015, STOC.

[17]  Andreas Krause,et al.  Distributed Submodular Cover: Succinctly Summarizing Massive Data , 2015, NIPS.

[18]  Andreas Krause,et al.  Lazier Than Lazy Greedy , 2014, AAAI.

[19]  Wei Chen,et al.  Robust Influence Maximization , 2016, KDD.

[20]  Morteza Zadimoghaddam,et al.  Horizontally Scalable Submodular Maximization , 2016, ICML.

[21]  J. Bilmes,et al.  Constrained Robust Submodular Optimization , 2016 .

[22]  James B. Orlin,et al.  Robust monotone submodular function maximization , 2015, Mathematical Programming.

[23]  Volkan Cevher,et al.  An Efficient Streaming Algorithm for the Submodular Cover Problem , 2016, NIPS.

[24]  Stefanie Jegelka,et al.  Robust Budget Allocation Via Continuous Submodular Functions , 2017, Applied Mathematics & Optimization.