Passively Q-Switched Operation of a Tm,Ho:LuVO4 Laser with a Graphene Saturable Absorber

A passively Q-switched (PQS) operation of Tm,Ho:LuVO4 laser is experimentally demonstrated with a graphene saturable absorber (SA) mirror. An average output power of 1034 mW at 54.5 kHz is acquired with an 8% optical–optical conversion efficiency. The energy per pulse of 40.4 μJ and a peak power of 56.07 W are achieved; the narrowest pulse width of 300 ns is acquired, and the output wavelengths of Tm,Ho:LuVO4 are 2075.02 nm in a continuous wave (CW) regime and 2057.03 nm in a PQS regime.

[1]  X. Mateos,et al.  Passive Q-switching of Yb bulk lasers by a graphene saturable absorber , 2016 .

[2]  Yi He,et al.  Diode-pumped acousto-optical Q-switched 912nm Nd:GdVO4 laser and extra-cavity frequency-doubling of 456nm deep-blue light emission , 2015 .

[3]  Y. Ju,et al.  Output characteristics of actively Q-switched Ho:LuVO₄ laser at room temperature. , 2015, Optics express.

[4]  Yoichi Sato,et al.  Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level , 2003 .

[5]  Wilson Sibbett,et al.  Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal , 2009 .

[6]  Dechun Li,et al.  Multilayer black phosphorus as saturable absorber for an Er:Lu 2 O 3 laser at ∼3 μm , 2016 .

[7]  Minhua Jiang,et al.  Continuous-wave laser performance of Nd:LuVO 4 crystal operating at 1.34 µm , 2005 .

[8]  B. Yao,et al.  Resonantly pumped room temperature Ho:LuVO₄ laser. , 2014, Optics letters.

[9]  Günter Steinmeyer,et al.  Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber. , 2008, Optics letters.

[10]  T. Taira,et al.  Comparative study on the spectroscopic properties of Nd:GdVO/sub 4/ and Nd:YVO/sub 4/ with hybrid process , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Zheng Cui,et al.  Highly efficient passively Q-switched Tm,Ho:GdVO4 laser with kilowatt peak power , 2016 .

[12]  E. Heumann,et al.  Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications , 2004 .

[13]  Bo Guo,et al.  2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [Invited] , 2018 .

[14]  Jun Xu,et al.  Passively Q-switched Nd:LuAG laser using few-layered MoS2 as saturable absorber , 2018 .

[15]  Xavier Mateos,et al.  Q-Switching of Ytterbium Lasers by A Graphene Saturable Absorber , 2017 .

[16]  Ursula J. Gibson,et al.  Vapor deposited Cr-doped ZnS thin films: Towards optically pumped mid-infrared waveguide lasers , 2016 .

[17]  Liwei Xu,et al.  Tm-fiber pumped single-longitudinal-mode Ho:LuVO4 laser , 2016 .

[18]  Yonggang Wang,et al.  2 μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber , 2012 .

[19]  Taisuke Ohta,et al.  Epitaxial graphene: a new material , 2008 .

[20]  Shengzhi Zhao,et al.  1.31 and 1.32 μm dual-wavelength Nd:LuLiF 4 laser , 2016 .

[21]  N. Nishioka,et al.  Comparison of tissue ablation with pulsed holmium and thulium lasers , 1990 .

[22]  Zheng Cui,et al.  Actively mode-locked Ho : LuVO4 laser at 2073.8 nm , 2016 .

[23]  M. W. Phillips,et al.  Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection. , 2011, Applied optics.

[24]  J. Taylor,et al.  Tm-doped fiber laser mode-locked by graphene-polymer composite. , 2012, Optics express.

[25]  Baoquan Yao,et al.  A passively Q-switched Ho:YVO4 Laser at 2.05 μm with Graphene Saturable Absorber , 2016 .

[26]  Yubai Pan,et al.  Stable passively Q-switched Tm,Ho YVO4 laser with near 100 ns pulse duration at 2 μm , 2014 .

[27]  Xavier Mateos,et al.  Tm:KLu(WO(4))(2) microchip laser Q-switched by a graphene-based saturable absorber. , 2015, Optics express.

[28]  Wei Wang,et al.  High beam quality of a Q-switched 2-µm Tm,Ho:LuVO4 laser , 2018 .

[29]  Xin Yu,et al.  Comparison on performance of passively Q-switched laser properties of continuous-grown composite GdVO4/Nd:GdVO4 and YVO4/Nd:YVO4 crystals under direct pumping. , 2011, Applied optics.