Feedforward motor information enhances somatosensory responses and sharpens angular tuning of rat S1 barrel cortex neurons

The primary vibrissae motor cortex (vM1) is responsible for generating whisking movements. In parallel, vM1 also sends information directly to the sensory barrel cortex (vS1). In this study, we investigated the effects of vM1 activation on processing of vibrissae sensory information in vS1 of the rat. To dissociate the vibrissae sensory-motor loop, we optogenetically activated vM1 and independently passively stimulated principal vibrissae. Optogenetic activation of vM1 supra-linearly amplified the response of vS1 neurons to passive vibrissa stimulation in all cortical layers measured. Maximal amplification occurred when onset of vM1 optogenetic activation preceded vibrissa stimulation by 20 ms. In addition to amplification, vM1 activation also sharpened angular tuning of vS1 neurons in all cortical layers measured. Our findings indicated that in addition to output motor signals, vM1 also sends preparatory signals to vS1 that serve to amplify and sharpen the response of neurons in the barrel cortex to incoming sensory input signals. DOI: http://dx.doi.org/10.7554/eLife.21843.001

[1]  Varun Sreenivasan,et al.  Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice , 2014, The European journal of neuroscience.

[2]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[3]  D. Kleinfeld,et al.  Adaptive Filtering of Vibrissa Input in Motor Cortex of Rat , 2002, Neuron.

[4]  Martin Deschênes,et al.  Single‐cell study of motor cortex projections to the barrel field in rats , 2003, The Journal of comparative neurology.

[5]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[6]  G. Fishell,et al.  A disinhibitory circuit mediates motor integration in the somatosensory cortex , 2013, Nature Neuroscience.

[7]  Cornelius Schwarz,et al.  Spatial Segregation of Different Modes of Movement Control in the Whisker Representation of Rat Primary Motor Cortex , 2005, The Journal of Neuroscience.

[8]  F. Helmchen,et al.  Barrel cortex function , 2013, Progress in Neurobiology.

[9]  Peter Lakatos,et al.  Dynamics of Active Sensing and perceptual selection , 2010, Current Opinion in Neurobiology.

[10]  D. Simons,et al.  Thalamocortical Angular Tuning Domains within Individual Barrels of Rat Somatosensory Cortex , 2003, The Journal of Neuroscience.

[11]  Diego Contreras,et al.  Synaptic Responses to Whisker Deflections in Rat Barrel Cortex as a Function of Cortical Layer and Stimulus Intensity , 2004, The Journal of Neuroscience.

[12]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[13]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[14]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[15]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[16]  D. Kleinfeld,et al.  Neuronal Basis for Object Location in the Vibrissa Scanning Sensorimotor System , 2011, Neuron.

[17]  A. E. Casale,et al.  Motor Cortex Feedback Influences Sensory Processing by Modulating Network State , 2013, Neuron.

[18]  Jackie Schiller,et al.  Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo , 2012, Nature.

[19]  D. Kleinfeld,et al.  'Where' and 'what' in the whisker sensorimotor system , 2008, Nature Reviews Neuroscience.

[20]  Bryan M. Hooks,et al.  Organization of Cortical and Thalamic Input to Pyramidal Neurons in Mouse Motor Cortex , 2013, The Journal of Neuroscience.

[21]  B. Sakmann,et al.  Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex , 2004, Nature.

[22]  Fan Wang,et al.  How the brainstem controls orofacial behaviors comprised of rhythmic actions , 2014, Trends in Neurosciences.

[23]  R. Azouz,et al.  Mechanisms of Tactile Information Transmission through Whisker Vibrations , 2009, The Journal of Neuroscience.

[24]  Karel Svoboda,et al.  Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex , 2011, Neuron.

[25]  C. Petersen,et al.  Long‐range connectivity of mouse primary somatosensory barrel cortex , 2010, The European journal of neuroscience.

[26]  M. Andermann,et al.  A somatotopic map of vibrissa motion direction within a barrel column , 2006, Nature Neuroscience.

[27]  David Kleinfeld,et al.  Hierarchy of orofacial rhythms revealed through whisking and breathing , 2013, Nature.

[28]  David Kleinfeld,et al.  Active sensation: insights from the rodent vibrissa sensorimotor system , 2006, Current Opinion in Neurobiology.

[29]  D. Simons Multi-whisker stimulation and its effects on vibrissa units in rat Sml barrel cortex , 1983, Brain Research.

[30]  J. Schiller,et al.  Texture coarseness responsive neurons and their mapping in layer 2–3 of the rat barrel cortex in vivo , 2014, eLife.

[31]  M. Larkum,et al.  NMDA spikes enhance action potential generation during sensory input , 2014, Nature Neuroscience.

[32]  Dori Derdikman,et al.  Pre-neuronal morphological processing of object location by individual whiskers , 2013, Nature Neuroscience.

[33]  Nicholas A. Steinmetz,et al.  Top-down control of visual attention , 2010, Current Opinion in Neurobiology.

[34]  R. Izraeli,et al.  Vibrissal motor cortex in the rat: connections with the barrel field , 2004, Experimental Brain Research.

[35]  Carrie J. McAdams,et al.  Effects of Attention on the Reliability of Individual Neurons in Monkey Visual Cortex , 1999, Neuron.

[36]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[37]  David Kleinfeld,et al.  Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat. , 2004, Journal of neurophysiology.

[38]  Fan Wang,et al.  The Brainstem Oscillator for Whisking and the Case for Breathing as the Master Clock for Orofacial Motor Actions. , 2014, Cold Spring Harbor symposia on quantitative biology.

[39]  S. Manita,et al.  A Top-Down Cortical Circuit for Accurate Sensory Perception , 2015, Neuron.

[40]  Cullen B. Owens,et al.  Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements , 2011, Front. Integr. Neurosci..

[41]  M. Brecht,et al.  Monosynaptic Pathway from Rat Vibrissa Motor Cortex to Facial Motor Neurons Revealed by Lentivirus-Based Axonal Tracing , 2005, The Journal of Neuroscience.

[42]  C. Petersen The Functional Organization of the Barrel Cortex , 2007, Neuron.

[43]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[44]  Romain Brette,et al.  Late Emergence of the Vibrissa Direction Selectivity Map in the Rat Barrel Cortex , 2011, The Journal of Neuroscience.

[45]  C. Petersen,et al.  Cortical control of whisker movement. , 2014, Annual review of neuroscience.

[46]  D. Simons,et al.  Biometric analyses of vibrissal tactile discrimination in the rat , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  D. Kleinfeld,et al.  Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system , 2009, Nature Neuroscience.

[48]  M. Diamond,et al.  Examination of the spatial and temporal distribution of sensory cortical activity using a 100-electrode array , 1999, Journal of Neuroscience Methods.

[49]  Mark Mazurek,et al.  Robust quantification of orientation selectivity and direction selectivity , 2014, Front. Neural Circuits.

[50]  W. Gan,et al.  Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity , 2015, Nature.

[51]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[52]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[53]  Mark T. Harnett,et al.  Potassium Channels Control the Interaction between Active Dendritic Integration Compartments in Layer 5 Cortical Pyramidal Neurons , 2013, Neuron.

[54]  D Kleinfeld,et al.  Anatomical loops and their electrical dynamics in relation to whisking by rat. , 1999, Somatosensory & motor research.

[55]  M. Häusser,et al.  Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons , 2010, Science.

[56]  E. Ahissar,et al.  Layer-Specific Touch-Dependent Facilitation and Depression in the Somatosensory Cortex during Active Whisking , 2006, The Journal of Neuroscience.

[57]  F. Haiss,et al.  Rhythmic Whisking Area (RW) in Rat Primary Motor Cortex: An Internal Monitor of Movement-Related Signals? , 2013, The Journal of Neuroscience.

[58]  Lin Tian,et al.  Activity in motor-sensory projections reveals distributed coding in somatosensation , 2012, Nature.

[59]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[60]  M. Diamond,et al.  Whisker sensory system – From receptor to decision , 2013, Progress in Neurobiology.

[61]  Tirin Moore,et al.  Prefrontal contributions to visual selective attention. , 2013, Annual review of neuroscience.

[62]  Daniel N. Hill,et al.  Primary Motor Cortex Reports Efferent Control of Vibrissa Motion on Multiple Timescales , 2011, Neuron.

[63]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[64]  Michael Brecht,et al.  What makes whiskers shake? Focus on "Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat". , 2004, Journal of neurophysiology.

[65]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[66]  D J Simons,et al.  The relationship of vibrissal motor cortex unit activity to whisking in the awake rat. , 1996, Somatosensory & motor research.

[67]  E. Ahissar,et al.  Encoding of Vibrissal Active Touch , 2003, Neuron.