Improvement of the impact performance of a starch based biopolymer via the incorporation of Miscanthus giganteus fibres

This paper examines the possibilities of using an established energy crop; Miscanthus giganteus as a filler/reinforcement in injection mouldable thermoplastic composites utilising a starch-based biopolymer; Novamont Mater-Bi as the matrix. A design of experiments methodology was used to reveal how varying the processing parameters and material formulation affected the impact performance of the biocomposite. The addition of Miscanthus fibres to the polymer results in composites with higher impact absorbance and loading than those of standard Mater-Bi. (c) 2004 Elsevier B.V All rights reserved.

[1]  P. Gatenholm,et al.  Biodegradable natural composites. I. Processing and properties , 1992 .

[2]  H. Ismail,et al.  Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent , 2002 .

[3]  P. Wambua,et al.  Natural fibres: can they replace glass in fibre reinforced plastics? , 2001 .

[4]  James Coombs,et al.  Chemicals and Polymers from Biomass , 1998 .

[5]  N. el. Bassam,et al.  Energy Plant Species : Their Use and Impact on Environment and Development , 1998 .

[6]  Jürgen Lörcks Properties and applications of compostable starch-based plastic material , 1998 .

[7]  K. Kaack,et al.  Variation in morphology, anatomy and chemistry of stems of Miscanthus genotypes differing in mechanical properties , 2003 .

[8]  Stephen J. Eichhorn,et al.  The Young's modulus of a microcrystalline cellulose , 2001 .

[9]  Thais H. S. Costa,et al.  Performance of polypropylene–wood fiber composites , 1999 .

[10]  Charis M. Thompson Back to Nature? , 2006, Isis.

[11]  Yan Li,et al.  Sisal fibre and its composites: a review of recent developments , 2000 .

[12]  H. Bader,et al.  Influence of natural fibres on the mechanical properties of biodegradable polymers. , 1998 .

[13]  B. Kokta,et al.  Effect of chemical treatment of fibers on the mechanical properties of polyethylene-wood fiber composites , 1989 .

[14]  Carmen Albano,et al.  Polypropylene/wood flour composites: treatments and properties , 2001 .

[15]  B. Wielage,et al.  Processing of natural-fibre reinforced polymers and the resulting dynamic–mechanical properties , 2003 .

[16]  Margaret A. Nemeth,et al.  Basic Statistics : Tools for Continuous Improvement , 1990 .

[17]  M. J. O'Dogherty,et al.  A Study of the Physical and Mechanical Properties of Wheat Straw , 1995 .

[18]  Daniel C. Mattis,et al.  The New Science of Strong Materials, or, Why You Don’t Fall Through the Floor , 1985 .

[19]  J. E. Gordon,et al.  A mechanism for the control of crack propagation in all-brittle systems , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  J. E. Puig,et al.  Flexural, impact and compressive properties of a rigid-thermoplastic matrix/cellulose fiber reinforced composites , 2002 .

[21]  Jiju Antony,et al.  Design of experiments for engineers and scientists , 2003 .

[22]  V. Hristov,et al.  Impact fracture behavior of modified polypropylene/wood fiber composites , 2004 .

[23]  C. Bastioli Properties and applications of Mater-Bi starch-based materials , 1998 .

[24]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[25]  A. Rana,et al.  Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading , 2003 .

[26]  Caroline Baillie,et al.  On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite , 2003 .

[27]  R. J. Crawford,et al.  Mechanics of engineering materials , 1986 .

[28]  J. Charrier,et al.  Polymeric materials and processing: Plastics, elastomers, and composites , 1991 .

[29]  J. Pinto,et al.  Statistical experimental design and modeling of polypropylene–wood fiber composites , 2000 .

[30]  N. El Bassam,et al.  Energy plant species , 1998 .

[31]  Z. Ismail,et al.  The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites , 1996 .

[32]  Douglas C. Montgomery,et al.  Applied Statistics and Probability for Engineers, Third edition , 1994 .

[33]  Stephen R. Hallett,et al.  Three-point beam impact tests on T300/914 carbon-fibre composites , 2000 .

[34]  M. Sannibale,et al.  Papermaking pulps from the fibrous fraction of Miscanthus x Giganteus , 2000 .

[35]  Satyendra Mishra,et al.  The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites , 2000 .