On-Chip Slot-Ring and High-Gain Horn Antennas for Millimeter-Wave Wafer-Scale Silicon Systems

This paper presents on-chip slot-ring and horn antennas for wafer-scale silicon systems. A high efficiency is achieved using a 100-μm quartz superstrate on top of the silicon chip, and a low-loss microstrip transformer using the silicon back-end metallization. A finite ground plane is also used to reduce the power coupled to the TEM mode. The slot-ring and 1-λ02 horn achieve a measured gain of 0-2 and 6-8 dBi at 90-96 GHz, respectively, and a radiation efficiency of ~50%. The horns achieve a high antenna gain without occupying a large area on the silicon wafer, thus resulting in a low-cost system. The designs are compatible with either single- or two-antenna transceivers, or with wafer-scale imaging systems and power-combining arrays.

[1]  Y. Hao,et al.  A monolithic active conical horn antenna array for millimeter and submillimeter wave applications , 2006, IEEE Transactions on Antennas and Propagation.

[2]  A. Shamim,et al.  24 GHz On-Chip Antennas and Balun on Bulk Si for Air Transmission , 2008, IEEE Transactions on Antennas and Propagation.

[3]  G. Ponchak,et al.  A 60-GHz CPW-Fed High-Gain and Broadband Integrated Horn Antenna , 2009, IEEE Transactions on Antennas and Propagation.

[4]  S. Safavi-Naeini,et al.  High-Efficiency On-Chip Dielectric Resonator Antenna for mm-Wave Transceivers , 2010, IEEE Transactions on Antennas and Propagation.

[5]  D. Rutledge,et al.  Substrate Optimization for Integrated Circuit Antennas , 1982, 1982 IEEE MTT-S International Microwave Symposium Digest.

[6]  B. Belentepe,et al.  Modeling and design of electromagnetically coupled microstrip-patch antennas and antenna arrays , 1995 .

[7]  R. Garg,et al.  Microstrip Antenna Design Handbook , 2000 .

[8]  H.-R. Chuang,et al.  A 60-GHz millimeter-wave CMOS RFIC-on-chip meander-line planar inverted-F antenna for WPAN applications , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[9]  H. Shoki,et al.  A triangular loop antenna mounted adjacent to a lossy Si substrate for millimeter-wave wireless PAN , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[10]  Jurgen Hasch,et al.  77 GHz radar transceiver with dual integrated antenna elements , 2010, German Microwave Conference Digest of Papers.

[11]  S. M. Spearing,et al.  Fabrication of wafer-level thermocompression bonds , 2002 .

[12]  O. Fordham,et al.  Analysis of stripline-fed slot-coupled patch antennas with vias for parallel-plate mode suppression , 1998 .

[13]  Dimitrios Peroulis,et al.  High-efficiency wire bond antennas for on-chip radios , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[14]  Gabriel M. Rebeiz,et al.  Design and analysis of quasi-integrated horn antennas for millimeter and submillimeter-wave applications , 1993 .

[15]  M. Sun,et al.  On-chip antennas for 60-GHz radios in silicon technology , 2005, IEEE Transactions on Electron Devices.

[16]  Gabriel M. Rebeiz,et al.  Millimeter-wave integrated-horn antennas. I. Theory , 1991 .

[17]  D. Peroulis,et al.  A Yagi–Uda Array of High-Efficiency Wire-Bond Antennas for On-Chip Radio Applications , 2009, IEEE Transactions on Microwave Theory and Techniques.

[18]  Gabriel M. Rebeiz,et al.  Single- and dual-polarized millimeter-wave slot-ring antennas , 1996 .

[19]  Gabriel M. Rebeiz,et al.  Monolithic millimeter-wave two-dimensional horn imaging arrays , 1990 .

[20]  A.P. Freundorfer,et al.  On-Chip Silicon Integrated Cylindrical Dielectric Resonator Antenna for Millimeter Wave Applications , 2007, 2007 International Symposium on Signals, Systems and Electronics.

[21]  S.P. Voinigescu,et al.  65GHz Doppler Sensor with On-Chip Antenna in 0.18μm SiGe BiCMOS , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[22]  Gabriel M. Rebeiz,et al.  Millimeter-Wave Wafer-Scale Silicon BiCMOS Power Amplifiers Using Free-Space Power Combining , 2011, IEEE Transactions on Microwave Theory and Techniques.

[23]  Ning Zhang,et al.  Bond Wire Antenna/Feed for Operation Near 60 GHz , 2009, IEEE Transactions on Microwave Theory and Techniques.

[24]  Cheng-Ying Hsu,et al.  A 60-GHz Millimeter-Wave CPW-Fed Yagi Antenna Fabricated by Using 0.18- $\mu\hbox{m}$ CMOS Technology , 2008, IEEE Electron Device Letters.

[25]  Gabriel M. Rebeiz,et al.  A W-band dielectric-lens-based integrated monopulse radar receiver , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[26]  D. Rutledge,et al.  INTEGRATED-CIRCUIT ANTENNAS. , 1983 .

[27]  Q. Hu,et al.  Development of a 3/spl times/3 micromachined millimeter wave SIS imaging array , 1997, IEEE Transactions on Applied Superconductivity.

[28]  A. Tomkins,et al.  Nanoscale CMOS Transceiver Design in the 90–170-GHz Range , 2009, IEEE Transactions on Microwave Theory and Techniques.

[29]  Gabriel M. Rebeiz,et al.  A 3 G-Bit/s W-band SiGe ASK receiver with a high-efficiency on-chip electromagnetically-coupled antenna , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[30]  Gabriel M. Rebeiz,et al.  Double-slot antennas on extended hemispherical and elliptical quartz dielectric lenses , 1993 .

[31]  Gabriel M. Rebeiz,et al.  Millimeter-wave integrated-horn antenna. II. Experiment , 1991 .

[32]  Gabriel M. Rebeiz Millimeter-wave and terahertz integrated circuit antennas , 1992, Proc. IEEE.