Multiscale modeling of lithium ion batteries: thermal aspects

The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory.

[1]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[2]  J. Newman,et al.  Thermal Modeling of the Lithium/Polymer Battery .1. Discharge Behavior of a Single-Cell , 1995 .

[3]  Wei Shyy,et al.  Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode Particles , 2008 .

[4]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[5]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[6]  P. Madden,et al.  Influence of solvation on the structural and capacitive properties of electrical double layer capacitors , 2013, 1308.5495.

[7]  Wei Lai,et al.  Mathematical Modeling of Porous Battery Electrodes-Revisit of Newman's Model , 2011 .

[8]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[9]  Jochen Zausch,et al.  Modeling of Species and Charge Transport in Li-Ion Batteries Based on Non-equilibrium Thermodynamics , 2010, NMA.

[10]  Dinh Vinh Do,et al.  Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery , 2010 .

[11]  Yue Qi,et al.  Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation , 2010 .

[12]  B. Scrosati,et al.  Lithium Batteries: Advanced Technologies and Applications , 2013 .

[13]  Xiongwen Zhang Thermal analysis of a cylindrical lithium-ion battery , 2011 .

[14]  Shriram Santhanagopalan,et al.  Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales , 2011 .

[15]  K. Persson,et al.  Li absorption and intercalation in single layer graphene and few layer graphene by first principles. , 2012, Nano letters.

[16]  K. Capelle,et al.  A bird's-eye view of density-functional theory , 2002 .

[17]  Wolfgang Dreyer,et al.  Phase transition in a rechargeable lithium battery , 2011, European Journal of Applied Mathematics.

[18]  Ralph E. White,et al.  Governing Equations for Transport in Porous Electrodes , 1997 .

[19]  Ralph E. White,et al.  Thermal Model for a Li-Ion Cell , 2008 .

[20]  R Gomer Diffusion of adsorbates on metal surfaces , 1990 .

[21]  Philippe Sautet,et al.  A multiscale theoretical methodology for the calculation of electrochemical observables from ab initio data: Application to the oxygen reduction reaction in a Pt(111)-based polymer electrolyte membrane fuel cell , 2011 .

[22]  Alejandro A. Franco,et al.  A Multiscale Model of Electrochemical Double Layers in Energy Conversion and Storage Devices , 2014 .

[23]  B. Yan,et al.  Three Dimensional Simulation of Galvanostatic Discharge of LiCoO2 Cathode Based on X-ray Nano-CT Images , 2012 .

[24]  Wei Lai,et al.  Derivation of Micro/Macro Lithium Battery Models from Homogenization , 2011 .

[25]  Wolfgang Dreyer,et al.  The behavior of a many-particle electrode in a lithium-ion battery , 2011 .

[26]  Marnix Wagemaker,et al.  The Role of Surface and Interface Energy on Phase Stability of Nanosized Insertion Compounds , 2009, Advanced materials.

[27]  Anton Van der Ven,et al.  Nondilute diffusion from first principles: Li diffusion in Li x TiS 2 , 2008 .

[28]  Krishna Garikipati,et al.  The Role of Coherency Strains on Phase Stability in LixFePO4: Needle Crystallites Minimize Coherency Strain and Overpotential , 2009 .

[29]  Rüdiger Müller,et al.  Overcoming the shortcomings of the Nernst-Planck model. , 2013, Physical chemistry chemical physics : PCCP.

[30]  R. Hentschke Non-Equilibrium Thermodynamics , 2014 .

[31]  S. Kjelstrup,et al.  Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler-Volmer and Nernst Equations , 2003 .

[32]  Ying Shirley Meng,et al.  First principles computational materials design for energy storage materials in lithium ion batteries , 2009 .

[33]  Ralph E. White,et al.  Influence of Some Design Variables on the Thermal Behavior of a Lithium‐Ion Cell , 1999 .

[34]  Marc Kamlah,et al.  Phase-field modeling of stress generation in electrode particles of lithium ion batteries , 2012 .

[35]  J. Newman,et al.  Thermal Modeling of Porous Insertion Electrodes , 2003 .

[36]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[37]  Chaoyang Wang,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells I. Model Development , 1998 .

[38]  M. Verbrugge,et al.  Diffusion Mediated Lithiation Stresses in Si Thin Film Electrodes , 2012 .

[39]  Gregory Jerkiewicz,et al.  Theoretical investigations of the oxygen reduction reaction on Pt(111). , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  Ralph E. White,et al.  Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) , 2011 .

[41]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[42]  J. C. Slattery,et al.  Momentum, Energy and Mass Transfer in Continua , 1976 .

[43]  Leilei Yin,et al.  Simulation of heat generation in a reconstructed LiCoO2 cathode during galvanostatic discharge , 2013 .

[44]  J A Warren,et al.  Phase field modeling of electrochemistry. II. Kinetics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Wei Lai,et al.  Electrochemical modeling of single particle intercalation battery materials with different thermodynamics , 2011 .

[46]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[47]  AB Initio Atomistic Thermodynamics and Statistical Mechanics of Surface Properties and Functions , 2005, cond-mat/0404510.

[48]  O. Borodin Molecular Modeling of Electrolytes , 2014 .

[49]  John Newman,et al.  Thermoelectric effects in electrochemical systems , 1995 .

[50]  Robert J. Kee,et al.  Thermodynamically consistent modeling of elementary electrochemistry in lithium-ion batteries , 2010 .

[51]  Martin Z. Bazant,et al.  Nonequilibrium Thermodynamics of Porous Electrodes , 2012, 1204.2934.

[52]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[53]  U. Kim,et al.  Effect of electrode configuration on the thermal behavior of a lithium-polymer battery , 2008 .

[54]  Alejandro A. Franco,et al.  Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges , 2013 .

[55]  Jochen Zausch,et al.  Thermodynamic derivation of a Butler-Volmer model for intercalation in Li-ion batteries , 2013 .

[56]  Birger Horstmann,et al.  Oxygen Reduction on Pt(111) in Aqueous Electrolyte: Elementary Kinetic Modeling , 2014 .

[57]  P. Balbuena,et al.  Lithium-ion batteries : solid-electrolyte interphase , 2004 .

[58]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[59]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[60]  D. Zoltan,et al.  Measurement of Seebeck coefficient using a large thermal gradient , 1988 .

[61]  Timo Jacob,et al.  Mathematical modeling of intercalation batteries at the cell level and beyond. , 2013, Chemical Society reviews.

[62]  Katja Bachmeier,et al.  Numerical Heat Transfer And Fluid Flow , 2016 .

[63]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[64]  J. Faraudo,et al.  Molecular dynamics simulations of concentrated aqueous electrolyte solutions , 2010, 1005.2857.

[65]  K. Xu “Charge-Transfer” Process at Graphite/Electrolyte Interface and the Solvation Sheath Structure of Li + in Nonaqueous Electrolytes , 2007 .

[66]  Jochen Zausch,et al.  Thermodynamic consistent transport theory of Li-ion batteries , 2011 .

[67]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[68]  Ann Marie Sastry,et al.  Micro-Scale Modeling of Li-Ion Batteries: Parameterization and Validation , 2012 .

[69]  Rahul Malik,et al.  A Critical Review of the Li Insertion Mechanisms in LiFePO4 Electrodes , 2013 .

[70]  A. Latz,et al.  Generalised constitutive equations for glassy systems , 1989 .

[71]  Chaoyang Wang,et al.  Thermal‐Electrochemical Modeling of Battery Systems , 2000 .

[72]  Jochen Rohrer,et al.  Insights into Degradation of Si Anodes from First-Principle Calculations , 2013 .

[73]  F. Calle‐Vallejo,et al.  First-principles computational electrochemistry: Achievements and challenges , 2012 .

[74]  Yoyo Hinuma,et al.  Lithium Diffusion in Graphitic Carbon , 2010, 1108.0576.

[75]  U. Kim,et al.  Modeling for the scale-up of a lithium-ion polymer battery , 2009 .

[76]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[77]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .

[78]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[79]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[80]  Y. Kuz'minskii,et al.  Thermal analysis of electrochemical reactions , 1988 .

[81]  K. Persson,et al.  Solid-Solution Li Intercalation as a Function of Cation Order/Disorder in the High-Voltage LixNi0.5Mn1.5O4 Spinel , 2013 .

[82]  J. Dzubiella,et al.  Electrolytes in a nanometer slab-confinement: ion-specific structure and solvation forces. , 2010, The Journal of chemical physics.

[83]  J. Bhattacharya,et al.  Understanding Li diffusion in Li-intercalation compounds. , 2013, Accounts of Chemical Research.

[84]  Karen E. Thomas,et al.  Mathematical Modeling of Lithium Batteries , 2002 .

[85]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[86]  J A Warren,et al.  Phase field modeling of electrochemistry. I. Equilibrium. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.