Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency EEG phenomena

[1]  F. Mormann,et al.  Seizure anticipation: from algorithms to clinical practice , 2006, Current opinion in neurology.

[2]  A. Tung New anesthesia techniques. , 2005, Thoracic surgery clinics.

[3]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[4]  Rafael Yuste,et al.  Global dendritic calcium spikes in mouse layer 5 low threshold spiking interneurones: implications for control of pyramidal cell bursting , 2004, The Journal of physiology.

[5]  Nancy Kopell,et al.  Alpha-Frequency Rhythms Desynchronize over Long Cortical Distances: A Modeling Study , 2000, Journal of Computational Neuroscience.

[6]  Walter Senn,et al.  Hyperpolarization-activated current Ih disconnects somatic and dendritic spike initiation zones in layer V pyramidal neurons. , 2003, Journal of neurophysiology.

[7]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. , 2003, Journal of neurophysiology.

[8]  S. Grossberg,et al.  Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. , 2003, Cerebral cortex.

[9]  Fadi N. Karameh,et al.  A model for cerebral cortical neuron group electric activity and its implications for cerebral function , 2002 .

[10]  Paul A. Rhodes,et al.  Apical tuft input efficacy in layer 5 pyramidal cells from rat visual cortex , 2001, The Journal of physiology.

[11]  Alain Destexhe,et al.  LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations , 2001, Neurocomputing.

[12]  M. Hallett,et al.  Transient Interhemispheric Neuronal Synchrony Correlates with Object Recognition , 2001, The Journal of Neuroscience.

[13]  R. Kötter,et al.  Layer-Specific Intracolumnar and Transcolumnar Functional Connectivity of Layer V Pyramidal Cells in Rat Barrel Cortex , 2001, The Journal of Neuroscience.

[14]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[15]  M. Massimini,et al.  Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. , 2001, Journal of neurophysiology.

[16]  M. Larkum,et al.  High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. , 2001, Journal of neurophysiology.

[17]  E. Basar,et al.  Gamma, alpha, delta, and theta oscillations govern cognitive processes. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[18]  M. Castro-Alamancos,et al.  Origin of Synchronized Oscillations Induced by Neocortical Disinhibition In Vivo , 2000, The Journal of Neuroscience.

[19]  T. Sejnowski,et al.  Origin of slow cortical oscillations in deafferented cortical slabs. , 2000, Cerebral cortex.

[20]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[21]  T. Kaneko,et al.  Predominant information transfer from layer III pyramidal neurons to corticospinal neurons , 2000, The Journal of comparative neurology.

[22]  C. Frassoni,et al.  Distribution of GABAB receptor protein in somatosensory cortex and thalamus of adult rats and during postnatal development , 2000, Brain Research Bulletin.

[23]  B Sakmann,et al.  Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex , 2000, The Journal of physiology.

[24]  Philip H Smith,et al.  Anatomy, Physiology, and Synaptic Responses of Rat Layer V Auditory Cortical Cells and Effects of Intracellular GABAABlockade , 2000 .

[25]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[26]  T. Sejnowski,et al.  Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. , 2000, Journal of neurophysiology.

[27]  C. Frassoni,et al.  Distribution of GABA(B) receptor protein in somatosensory cortex and thalamus of adult rats and during postnatal development. , 2000, Brain research bulletin.

[28]  R. McCarley,et al.  Neuroanatomical and neurophysiological aspects of sleep: basic science and clinical relevance. , 2000, Seminars in clinical neuropsychiatry.

[29]  S. Hestrin,et al.  Burst firing induces a rebound of synaptic strength at unitary neocortical synapses. , 2000, Journal of neurophysiology.

[30]  P H Smith,et al.  Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA(A) blockade. , 2000, Journal of neurophysiology.

[31]  B. Sakmann,et al.  Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Stephen R. Williams,et al.  Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons , 1999, The Journal of physiology.

[33]  H. Wilson Simplified dynamics of human and mammalian neocortical neurons. , 1999, Journal of theoretical biology.

[34]  D J Simons,et al.  Cortical columnar processing in the rat whisker-to-barrel system. , 1999, Journal of neurophysiology.

[35]  Jian-Young Wu,et al.  Propagating Activation during Oscillations and Evoked Responses in Neocortical Slices , 1999, The Journal of Neuroscience.

[36]  M A Nicolelis,et al.  Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. , 1999, Cerebral cortex.

[37]  D. Contreras,et al.  Spatiotemporal Analysis of Local Field Potentials and Unit Discharges in Cat Cerebral Cortex during Natural Wake and Sleep States , 1999, The Journal of Neuroscience.

[38]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[39]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[40]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[41]  P. Schwindt,et al.  Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons. , 1999, Journal of neurophysiology.

[42]  X. Wang Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons , 1999, Neuroscience.

[43]  M Steriade,et al.  Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M Steriade,et al.  Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns. , 1998, Journal of neurophysiology.

[45]  T. Sejnowski,et al.  Computational Models of Thalamocortical Augmenting Responses , 1998, The Journal of Neuroscience.

[46]  N Dürmüller,et al.  Role of Thalamic and Cortical Neurons in Augmenting Responses and Self-Sustained Activity: Dual Intracellular Recordings In Vivo , 1998, The Journal of Neuroscience.

[47]  D. Prince,et al.  Cholinergic switching within neocortical inhibitory networks. , 1998, Science.

[48]  T J Sejnowski,et al.  Cellular and network models for intrathalamic augmenting responses during 10-Hz stimulation. , 1998, Journal of neurophysiology.

[49]  A. Thomson,et al.  Postsynaptic pyramidal target selection by descending layer III pyramidal axons: dual intracellular recordings and biocytin filling in slices of rat neocortex , 1998, Neuroscience.

[50]  B W Connors,et al.  Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I , 1998, The Journal of comparative neurology.

[51]  V. Mountcastle Perceptual Neuroscience: The Cerebral Cortex , 1998 .

[52]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[53]  J. Deuchars,et al.  Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. , 1997, Cerebral cortex.

[54]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[55]  H. Markram A network of tufted layer 5 pyramidal neurons. , 1997, Cerebral cortex.

[56]  T. Sejnowski,et al.  Spatiotemporal Patterns of Spindle Oscillations in Cortex and Thalamus , 1997, The Journal of Neuroscience.

[57]  B. Connors,et al.  Cellular Mechanisms of the Augmenting Response: Short-Term Plasticity in a Thalamocortical Pathway , 1996, The Journal of Neuroscience.

[58]  T. Sejnowski,et al.  Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. , 1996, Journal of neurophysiology.

[59]  G. Hu,et al.  Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro , 1996, Neuroscience.

[60]  B W Connors,et al.  Spatiotemporal properties of short-term plasticity sensorimotor thalamocortical pathways of the rat , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[62]  W. J. Nowack Neocortical Dynamics and Human EEG Rhythms , 1995, Neurology.

[63]  J. van Brederode,et al.  Differences in inhibitory synaptic input between layer II-III and layer V neurons of the cat neocortex. , 1995, Journal of neurophysiology.

[64]  David T. J. Liley,et al.  Simulation of electrocortical waves , 1995, Biological Cybernetics.

[65]  Charles M. Gray,et al.  Simulations of Intrinsically Bursting Neocortical Pyramidal Neurons , 1994, Neural Computation.

[66]  M Steriade,et al.  Electrophysiology of cat association cortical cells in vivo: intrinsic properties and synaptic responses. , 1993, Journal of neurophysiology.

[67]  D. McCormick,et al.  Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S,3R- ACPD , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  M. Armstrong‐James,et al.  Flow of excitation within rat barrel cortex on striking a single vibrissa. , 1992, Journal of neurophysiology.

[69]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[70]  D. McCormick,et al.  Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. , 1992, Journal of neurophysiology.

[71]  F. D. Silva Neural mechanisms underlying brain waves: from neural membranes to networks. , 1991 .

[72]  P. Schwindt,et al.  Post‐inhibitory excitation and inhibition in layer V pyramidal neurones from cat sensorimotor cortex. , 1991, The Journal of physiology.

[73]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[74]  P. Nunez,et al.  Electric fields of the brain , 1981 .