Tutorial on Reasoning in Expressive Non-Classical Logics with Isabelle/HOL

Non-classical logics (such as modal logics, description logics, conditional logics, multi-valued logics, hybrid logics, etc.) have many applications in artificial intelligence. In this tutorial, we will demonstrate a generic approach to automate propositional and quantified variants of non-classical logics using theorem proving systems for classical higher-order logic. Our particular focus will be on quantified multimodal logics. We will present and discuss a semantical embedding of quantified multimodal logics into classical higher-order logic, which enables the encoding and automated analysis of non-trivial modal logic problems in the Isabelle/HOL proof assistant. Additionally, TPTP compliant automated theorem proving systems can be called from within Isabelle’s Sledgehammer tool for automating reasoning tasks. In the tutorial, we will apply this approach to exemplarily solve a prominent puzzle from the AI literature: the well-known wise men.

[1]  Frank Wolter,et al.  Handbook of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning) , 2006 .

[2]  Christoph Benzmüller,et al.  Sweet SIXTEEN: Automation via Embedding into Classical Higher-Order Logic , 2016 .

[3]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[4]  Christoph Benzmüller,et al.  Automating Free Logic in Isabelle/HOL , 2016, ICMS.

[5]  Christoph Benzmüller,et al.  Higher-order semantics and extensionality , 2004, Journal of Symbolic Logic.

[6]  Christoph Benzmüller,et al.  Agent-Based HOL Reasoning , 2016, ICMS.

[7]  Robert Stalnaker A Theory of Conditionals , 2019, Knowledge and Conditionals.

[8]  Christoph Benzmüller,et al.  TPTP and Beyond: Representation of Quantified Non-Classical Logics , 2016, ARQNL@IJCAR.

[9]  Brian F. Chellas Basic conditional logic , 1975, J. Philos. Log..

[10]  Peter B. Andrews General Models, Descriptions, and Choice in Type Theory , 1972, J. Symb. Log..

[11]  Reinhard Muskens,et al.  Higher order modal logic , 2007, Handbook of Modal Logic.

[12]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[13]  Bruno Woltzenlogel Paleo,et al.  The Inconsistency in Gödel's Ontological Argument: A Success Story for AI in Metaphysics , 2016, IJCAI.

[14]  Bruno Woltzenlogel Paleo,et al.  Higher-Order Modal Logics: Automation and Applications , 2015, Reasoning Web.

[15]  Tobias Nipkow,et al.  A Proof Assistant for Higher-Order Logic , 2002 .

[16]  Chad E. Brown,et al.  Satallax: An Automatic Higher-Order Prover , 2012, IJCAR.

[17]  Alexander Steen,et al.  Embedding of Quantified Higher-Order Nominal Modal Logic into Classical Higher-Order Logic , 2014, ARQNL@IJCAR.

[18]  Lawrence C. Paulson,et al.  Quantified Multimodal Logics in Simple Type Theory , 2009, Logica Universalis.

[19]  Peter B. Andrews General models and extensionality , 1972, Journal of Symbolic Logic.

[20]  Dale Miller,et al.  Automation of Higher-Order Logic , 2014, Computational Logic.

[21]  Christoph Benzmüller,et al.  Invited Talk: On a (Quite) Universal Theorem Proving Approach and Its Application in Metaphysics , 2015, TABLEAUX.

[22]  Christoph Benzmüller,et al.  Cut-Elimination for Quantified Conditional Logic , 2017, J. Philos. Log..

[23]  Siegfried Gottwald,et al.  Many-Valued and Fuzzy Logics , 2015, Handbook of Computational Intelligence.

[24]  Christoph Benzm,et al.  Automating Quantified Conditional Logics in HOL , 2013 .

[25]  Peter B. Andrews Classical Type Theory , 2001, Handbook of Automated Reasoning.

[26]  Christoph Benzmüller,et al.  Axiomatizing Category Theory in Free Logic , 2016, ArXiv.

[27]  Christoph Benzmüller,et al.  Higher-Order Automated Theorem Provers , 2015 .

[28]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[29]  Lawrence C. Paulson,et al.  The Higher-Order Prover Leo-II , 2015, Journal of Automated Reasoning.

[30]  Frank Pfenning,et al.  TPS: A theorem-proving system for classical type theory , 1996, Journal of Automated Reasoning.

[31]  Bruno Woltzenlogel Paleo,et al.  Computer-Assisted Analysis of the Anderson–Hájek Ontological Controversy , 2017, Logica Universalis.