Surface stress-based biosensors.

Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed.

[1]  H. J. Wasserman,et al.  On the determination of the surface stress of copper and platinum , 1972 .

[2]  Michel Godin,et al.  Combined in situ micromechanical cantilever-based sensing and ellipsometry , 2003 .

[3]  Arun Majumdar,et al.  Parylene micro membrane capacitive sensor array for chemical and biological sensing , 2006 .

[4]  G. Whitesides,et al.  Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers , 1993 .

[5]  Akio Yasukawa,et al.  Optimum design considerations for silicon piezoresistive pressure sensors , 1997 .

[6]  A. Majumdar,et al.  A 2-D microcantilever array for multiplexed biomolecular analysis , 2004, Journal of Microelectromechanical Systems.

[7]  T. Thundat,et al.  Glucose biosensing using an enzyme-coated microcantilever , 2002 .

[8]  Shih-Ming Yang,et al.  A piezoresistive bridge-microcantilever biosensor by CMOS process for surface stress measurement , 2010 .

[9]  César Fernández-Sánchez,et al.  Quantitative impedimetric immunosensor for free and total prostate specific antigen based on a lateral flow assay format , 2004 .

[10]  Hai-Feng Ji,et al.  Approaches to increasing surface stress for improving signal-to-noise ratio of microcantilever sensors. , 2010, Analytical chemistry.

[11]  Beth L Pruitt,et al.  Analysis of nematode mechanics by piezoresistive displacement clamp , 2007, Proceedings of the National Academy of Sciences.

[12]  N. Bartelt,et al.  Identifying the forces responsible for self-organization of nanostructures at crystal surfaces , 1999, Nature.

[13]  M. Grattarola,et al.  Micromechanical cantilever-based biosensors , 2001 .

[14]  T. Thundat,et al.  Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. , 2001, Analytical chemistry.

[15]  Robert Lewis Reuben,et al.  Label-free and real-time monitoring of yeast cell growth by the bending of polymer microcantilever biosensors , 2013 .

[16]  D Leech,et al.  Characterisation of an antibody coated microcantilever as a potential immuno-based biosensor. , 2002, Biosensors & bioelectronics.

[17]  Yanbin Li,et al.  Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. , 2004, Biosensors & bioelectronics.

[18]  H. Kimble,et al.  Cavity optomechanics with stoichiometric SiN films. , 2009, Physical review letters.

[19]  M. Welland,et al.  Microcantilever-based biosensors , 2000, Ultramicroscopy.

[20]  Reuter,et al.  Surface stress as a driving force for interfacial mixing. , 1992, Physical review letters.

[21]  O. Hansen,et al.  Optimization of sensitivity and noise in piezoresistive cantilevers , 2002 .

[22]  A K Chakraborty,et al.  Origin of nanomechanical cantilever motion generated from biomolecular interactions. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Hiranmay Saha,et al.  Design optimization of a high performance silicon MEMS piezoresistive pressure sensor for biomedical applications , 2006 .

[24]  James K. Gimzewski,et al.  Surface stress in the self-assembly of alkanethiols on gold , 1997 .

[25]  Francesca Campabadal,et al.  Optimized technology for the fabrication of piezoresistive pressure sensors , 2000 .

[26]  Wolfgang Göpel,et al.  A new affinity biosensor: self-assembled thiols as selective monolayer coatings of quartz crystal microbalances , 1996 .

[27]  Ying-Zong Juang,et al.  A micro-cantilever sensor chip based on contact angle analysis for a label-free troponin I immunoassay. , 2013, Lab on a chip.

[28]  Stavros Chatzandroulis,et al.  Capacitive-type chemical sensors using thin silicon/polymer bimorph membranes , 2004 .

[29]  Masakazu Aono,et al.  Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor(MSS) with Improved Sensitivity , 2012, Sensors.

[30]  Yanbin Li,et al.  A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples , 2007 .

[31]  Michel Godin,et al.  A differential microcantilever-based system for measuring surface stress changes induced by electrochemical reactions , 2005 .

[32]  G. Poirier,et al.  Characterization of Organosulfur Molecular Monolayers on Au(111) using Scanning Tunneling Microscopy. , 1997, Chemical reviews.

[33]  D. Rugar,et al.  Improved fiber‐optic interferometer for atomic force microscopy , 1989 .

[34]  Ben Fabry,et al.  Microrheology of human lung epithelial cells measured by atomic force microscopy. , 2003, Biophysical journal.

[35]  G. Whitesides,et al.  Patterning Mammalian Cells Using Elastomeric Membranes , 2000 .

[36]  C. W. Mays,et al.  On surface stress and surface tension: II. Determination of the surface stress of gold , 1968 .

[37]  Sheng D. Chao,et al.  3,4-Methylenedioxymethylamphetamine detection using a microcantilever-based biosensor , 2012 .

[38]  Chun-Hyung Cho,et al.  Characterization of the Temperature Dependence of the Pressure Coefficients of n- and p-Type Silicon Using Hydrostatic Testing , 2008, IEEE Sensors Journal.

[39]  D. K. Schwartz,et al.  Mechanisms and kinetics of self-assembled monolayer formation. , 2001, Annual review of physical chemistry.

[40]  Darryl Y Sasaki,et al.  Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells. , 2005, Journal of biomedical materials research. Part A.

[41]  Michel Godin,et al.  Surface stress, kinetics, and structure of alkanethiol self-assembled monolayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[42]  Udo D. Schwarz,et al.  A miniature fibre optic force microscope scan head , 1993 .

[43]  Anja Boisen,et al.  Noise in piezoresistive atomic force microscopy , 1999 .

[44]  Fei Su,et al.  Microfluidics-Based Biochips: Technology Issues, Implementation Platforms, and Design-Automation Challenges , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[45]  J. F. Creemer,et al.  Piezoresistive Cantilever Beam for Force Sensingin Two Dimensions , 2007, IEEE Sensors Journal.

[46]  V Tsouti,et al.  Capacitive microsystems for biological sensing. , 2011, Biosensors & bioelectronics.

[47]  Ioanna Zergioti,et al.  Evaluation of capacitive surface stress biosensors , 2012 .

[48]  James K. Gimzewski,et al.  An artificial nose based on a micromechanical cantilever array , 1999 .

[49]  Peter Vettiger,et al.  A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors , 1998 .

[50]  N. D. Rooij,et al.  Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors , 1996 .

[51]  C. Quate,et al.  Atomic resolution with an atomic force microscope using piezoresistive detection , 1993 .

[52]  George M. Whitesides,et al.  Wetting and Protein Adsorption on Self-Assembled Monolayers of Alkanethiolates Supported on Transparent Films of Gold , 1994 .

[53]  Cengiz S. Ozkan,et al.  High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding , 2003 .

[54]  Christopher S. Chen,et al.  Cells lying on a bed of microneedles: An approach to isolate mechanical force , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Patrick Ruther,et al.  Geometry optimization for planar piezoresistive stress sensors based on the pseudo-Hall effect , 2006 .

[56]  Stavros Chatzandroulis,et al.  Sensitivity study of surface stress biosensors based on ultrathin Si membranes , 2012 .

[57]  Shih-Ming Yang,et al.  Development of a double-microcantilever for surface stress measurement in microsensors , 2007 .

[58]  D. W. van der Weide,et al.  Direct electrical detection of hybridization at DNA-modified silicon surfaces. , 2004, Biosensors & bioelectronics.

[59]  H. Lang,et al.  A label-free immunosensor array using single-chain antibody fragments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Shengbo Sang,et al.  Fabrication of a surface stress-based PDMS micro-membrane biosensor , 2010 .

[61]  Christoph Hagleitner,et al.  Application-specific sensor systems based on CMOS chemical microsensors , 2000 .

[62]  Xiaomei Yu,et al.  Piezoresistive bridge microcantilevers biosensor based on SOI wafer for glucose detecting , 2013 .

[63]  Sangmin Jeon,et al.  Detection of formaldehyde vapor using mercaptophenol-coated piezoresistive cantilevers , 2007 .

[64]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[65]  R. Austin,et al.  Force mapping in epithelial cell migration. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Kyihwan Park,et al.  Design optimization of a piezoresistive pressure sensor considering the output signal-to-noise ratio , 2004 .

[67]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[68]  Yating Chai,et al.  Effects of surface functionalization on the surface phage coverage and the subsequent performance of phage-immobilized magnetoelastic biosensors. , 2011, Biosensors & bioelectronics.

[69]  F. Schreiber Structure and growth of self-assembling monolayers , 2000 .

[70]  B G De Grooth,et al.  Biomolecular interactions measured by atomic force microscopy. , 2000, Biophysical journal.

[71]  Joyce Y Wong,et al.  Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. , 2005, Biomaterials.

[72]  I. Zergioti,et al.  Biosensors by means of laser induced forward transfer technique , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[73]  Hisakazu Nozoye,et al.  Molecular processes of adsorption and desorption of alkanethiol monolayers on Au(111) , 1999 .

[74]  Yong Xu,et al.  Design and Optimization of an Ultra-Sensitive Piezoresistive Accelerometer for Continuous Respiratory Sound Monitoring , 2007 .

[75]  T. Kenny,et al.  1/f noise considerations for the design and process optimization of piezoresistive cantilevers , 2000, Journal of Microelectromechanical Systems.

[76]  Joe Tien,et al.  Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus. , 2003, Journal of biomedical materials research. Part A.

[77]  Raj Mutharasan,et al.  Sample preparation-free, real-time detection of microRNA in human serum using piezoelectric cantilever biosensors at attomole level. , 2012, Analytical chemistry.

[78]  Switzerland,et al.  Bending strain-driven modification of surface reconstructions: Au(111) , 2002 .

[79]  Shih-Ming Yang,et al.  Design and analysis of piezoresistive microcantilever for surface stress measurement in biochemical sensor , 2007 .

[80]  Tae June Kang,et al.  Multifunctional nanocomposite membrane for chemomechanical transducer , 2010 .

[81]  Tae Song Kim,et al.  Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. , 2004, Biosensors & bioelectronics.

[82]  Patrick Ruther,et al.  Multidimensional CMOS in-plane stress sensor , 2005 .

[83]  C. le Grimellec,et al.  Tapping-mode atomic force microscopy on intact cells: optimal adjustment of tapping conditions by using the deflection signal. , 2000, Ultramicroscopy.

[84]  Anne-Marie Gué,et al.  Design of a low power SnO2 gas sensor integrated on silicon oxynitride membrane , 2000 .

[85]  Jungchul Lee,et al.  Differential Scanning Calorimeter Based on Suspended Membrane Single Crystal Silicon Microhotplate , 2008, Journal of Microelectromechanical Systems.

[86]  Oliver Brand,et al.  A CMOS-based integrated-system architecture for a static cantilever array , 2008 .

[87]  Johannes D. Seelig,et al.  Label-free protein assay based on a nanomechanical cantilever array , 2002 .

[88]  Javier Tamayo,et al.  Optical sequential readout of microcantilever arrays for biological detection , 2005 .

[89]  Roberto Raiteri,et al.  Micromechanics senses biomolecules , 2002 .

[90]  R Shuttleworth,et al.  The Surface Tension of Solids , 1950 .

[91]  Makoto Ishida,et al.  Low temperature dependence three-axis accelerometer for high temperature environments with temperature control of SOI piezoresistors , 2003 .

[92]  F. J. V. Preissig Applicability of the classical curvature-stress relation for thin films on plate substrates , 1989 .

[93]  Ernst Meyer,et al.  Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology , 2002 .

[94]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[95]  Roberto Raiteri,et al.  Changes in surface stress at the liquid:solid interface measured with a microcantilever , 2000 .

[96]  H. Witte,et al.  Finite Element Analysis of the Membrane Used in a Novel BioMEMS , 2009 .

[97]  Jason A. Paulsen,et al.  Two‐step cell patterning on planar and complex curved surfaces by precision spraying of polymers , 2006, Biotechnology and bioengineering.

[98]  Arun Majumdar,et al.  Quantitative and label-free technique for measuring protease activity and inhibition using a microfluidic cantilever array. , 2008, Nano letters.

[99]  Jungchul Lee,et al.  Improved All-Silicon Microcantilever Heaters With Integrated Piezoresistive Sensing , 2008, Journal of Microelectromechanical Systems.

[100]  Byung-Gee Kim,et al.  Biomolecular detection with a thin membrane transducer. , 2008, Lab on a chip.

[101]  Jaroslaw Drelich,et al.  Determination of solid surface tension from particle-substrate pull-off forces measured with the atomic force microscope. , 2004, Journal of colloid and interface science.

[102]  M G Walker,et al.  Immobilizing live bacteria for AFM imaging of cellular processes. , 2009, Ultramicroscopy.

[103]  Michel Godin,et al.  A complete analysis of the laser beam deflection systems used in cantilever-based systems. , 2007, Ultramicroscopy.

[104]  Ioanna Zergioti,et al.  Detection of DNA mutations using a capacitive micro-membrane array. , 2010, Biosensors & bioelectronics.

[105]  Shengbo Sang,et al.  A novel PDMS micro membrane biosensor based on the analysis of surface stress. , 2010, Biosensors & bioelectronics.

[106]  M. Fujihira,et al.  Imaging stretched single DNA molecules by pulsed-force-mode atomic force microscopy. , 2003, Ultramicroscopy.

[107]  Anja Boisen,et al.  Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors. , 2002, Ultramicroscopy.

[108]  Harald Ibach,et al.  STRESS RELIEF IN RECONSTRUCTION , 1997 .

[109]  Gang Li,et al.  Structural optimization of the micro-membrane for a novel surface stress-based capacitive biosensor , 2013 .

[110]  Anja Boisen,et al.  Design & fabrication of cantilever array biosensors , 2009 .

[111]  Alik S Widge,et al.  Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. , 2007, Biosensors & bioelectronics.

[112]  Beth L. Pruitt,et al.  Review: Semiconductor Piezoresistance for Microsystems , 2009, Proceedings of the IEEE.

[113]  Arun Majumdar,et al.  Nanomechanical assay to investigate the selectivity of binding interactions between volatile benzene derivatives. , 2008, Nano letters.