A Calculus of Substitutions for Incomplete-Proof Representation in Type Theory

In the framework of intuitionnistic logic and type theory, the concepts of «propositions» and «types» are identified. This principle is known as the Curry-Howard isomorphism, and it is at the base of mathematical formalisms where proofs are represented as typed lambda-terms. In order to see the process of proof construction as an incremental process of term construction, it is necessary to extend the lambda-calculus with new operators. First, we consider typed meta-variables to represent the parts of a proof that are under construction, and second, we make explicit the substitution mechanism in order to deal with capture of variables that are bound in terms containing meta-variables. Unfortunately, the theory of explicit substitution calculi with typed meta-variables is more complex than that of lambda-calculus. And worse, in general they do not share the same properties, notably with respect to confluence and strong normalization. A contribution of this thesis is to show that the properties of confluence and strong normalization are not incompatible with explicit substitution calculi. This thesis also proposes a calculus with explicit substitutions and typed meta-variables for dependent type systems, in particular for the Calculus of Constructions, which allows incomplete proof-terms to be represented. For these type systems, we prove the main typing properties: Type Uniqueness, Subject Reduction, Weak Normalization, Confluence and Typing Decidability. Finally, we give an application of this formalism to proof synthesis. The proposed method merges a procedure for term enumeration with a technique of higher-order unification via explicit substitutions where unification variables are coded as meta-variables.

[1]  Lena Magnusson,et al.  The implementation of ALF : a proof editor based on Martin-Löf's monomorphic type theory with explicit substitution , 1994 .

[2]  Manfred Schmidt-Schauß,et al.  Computational Aspects of an Order-Sorted Logic with Term Declarations , 1989, Lecture Notes in Computer Science.

[3]  C. Muñoz,et al.  Meta-theoretical Properties of : a Left-linear Variant of Meta-theoretical Properties of : a Left-linear Variant Of , 1997 .

[4]  Gérard P. Huet,et al.  A Unification Algorithm for Typed lambda-Calculus , 1975, Theor. Comput. Sci..

[5]  Pierre-Louis Curien Categorical Combinators, Sequential Algorithms, and Functional Programming , 1993, Progress in Theoretical Computer Science.

[6]  C Esar,et al.  Proof Representation in Type Theory: State of the Art , 1996 .

[7]  G. Dowek Démonstration Automatique dans le Calcul des Constructions. (Automated Theorem Proving in the Calculus of Constructions) , 1991 .

[8]  Henk Barendregt,et al.  Types in Lambda Calculi and Programming Languages , 1990, ESOP.

[9]  Fairouz Kamareddine,et al.  The Barendregt Cube with Definitions and Generalised Reduction , 1996, Inf. Comput..

[10]  Delia Kesner,et al.  Confluence Properties of Extensional and Non-Extensional lambda-Calculi with Explicit Substitutions (Extended Abstract) , 1996, RTA.

[11]  Pierre Lescanne,et al.  The Calculus of Explicit Substitutions , 1994 .

[12]  David J. Pym,et al.  Proof-Terms for Classical and Intuitionistic Resolution (Extended Abstract) , 1996, CADE.

[13]  Claude Kirchner,et al.  Unification via Explicit Substitutions: The Case of Higher-Order Patterns , 1996, JICSLP.

[14]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[15]  Delia Kesner,et al.  -calculi with Explicit Substitutions and Weak Composition Which Preserve -strong Normalization , 1996 .

[16]  H. Geuvers The Church-Rosser property for βη-reduction in typed λ-calculi , 1992, LICS 1992.

[17]  Roberto Di Cosmo,et al.  Strong normalization of explicit substitutions via cut elimination in proof nets , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[18]  T. Clement Using Metavariables in Natural Deduction Proofs , 1992, Refine.

[19]  Pierre Lescanne,et al.  From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.

[20]  C. J. Bloo,et al.  Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection , 1995 .

[21]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[22]  Fairouz Kamareddine,et al.  A -calculus a La De Bruijn with Explicit Substitutions 7th International Conference on Programming Languages: Implementations, Logics and Programs, Plilp95, Lncs 982, Pages 45-62 , 1995 .

[23]  Pierre Lescanne,et al.  Explicit Substitutions with de Bruijn's Levels , 1995, RTA.

[24]  CurienPierre-Louis,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996 .

[25]  Hugo Herbelin,et al.  The Coq proof assistant : reference manual, version 6.1 , 1997 .

[26]  César A. Muñoz,et al.  Confluence and preservation of strong normalisation in an explicit substitutions calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[27]  Herman Geuvers,et al.  On the Church-Rosser property for expressive type systems and its consequences for their metatheoretic study , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[28]  Lindsay Groves,et al.  Metavariables and Conditional Refinements in the Refinement Calculus , 1994, Refine.

[29]  Pierre-Louis Curien,et al.  Categorical Combinators , 1986, Inf. Control..

[30]  J. Goubault-Larrecq,et al.  A Proof of Weak Termination of Typed-CalculiJean , 2022 .

[31]  F. Honsell,et al.  A Framework for De ning LogicsRobert Harper , 1987 .

[32]  Frank Pfenning,et al.  Higher-order abstract syntax , 1988, PLDI '88.

[33]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[34]  Robert Pollack,et al.  On Extensibility of Proof Checkers , 1994, TYPES.

[35]  Hans Zantema,et al.  Termination of Term Rewriting: Interpretation and Type Elimination , 1994, J. Symb. Comput..

[36]  Claude Kirchner,et al.  Higher-Order Equational Unification via Explicit Substitutions , 1997, ALP/HOA.

[37]  Herman Geuvers,et al.  A short and flexible proof of Strong Normalization for the Calculus of Constructions , 1994, TYPES.

[38]  Gérard Huet,et al.  Constrained resolution: a complete method for higher-order logic. , 1972 .

[39]  Fairouz Kamareddine,et al.  The S-calculus: Its Typed and Its Extended Versions , 1995 .

[40]  M. Schmidt-Schauβ Computational Aspects of an Order-Sorted Logic with Term Declarations , 1989 .

[41]  Thorsten Altenkirch,et al.  A user's guide to {ALF , 1994 .

[42]  Alan Bundy,et al.  A framework for program development based on schematic proof , 1993, Proceedings of 1993 IEEE 7th International Workshop on Software Specification and Design.

[43]  Amy P. Felty,et al.  Tactic Theorem Proving with Refinement-Tree Proofs and Metavariables , 1994, CADE.

[44]  Dale Miller,et al.  A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification , 1991, J. Log. Comput..

[45]  Thérèse Hardin,et al.  Proof of termination of the rewriting system subst on CCL , 1986, Theor. Comput. Sci..

[46]  Teruo Hikita,et al.  A Rewriting System for Categorical Combinators with Multiple Arguments , 1990, SIAM J. Comput..

[47]  N. A C H U M D E R S H O W I T Z Termination of Rewriting' , 2022 .

[48]  Lawrence C. Paulson,et al.  Isabelle: The Next 700 Theorem Provers , 2000, ArXiv.

[49]  de Ng Dick Bruijn,et al.  Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[50]  Rod M. Burstall Terms, proofs and refinement (Extended abstract) , 1994, LICS 1994.

[51]  Cj Roel Bloo,et al.  Preservation of termination for explicit substitution , 1997 .

[52]  C. Kirchner,et al.  Higher-order unification via explicit substitutions Extended Abstract , 1995, LICS 1995.

[53]  Hans Zantema,et al.  Termination of Term Rewriting by Semantic Labelling , 1995, Fundam. Informaticae.

[54]  Carolyn L. Talcott,et al.  A Theory of Binding Structures and Applications to Rewriting , 1993, Theor. Comput. Sci..

[55]  Zhaohui Luo,et al.  Computation and reasoning - a type theory for computer science , 1994, International series of monographs on computer science.

[56]  César A. Muñoz,et al.  Dependent Types with Explicit Substitutiuons: A Meta-theoretical development , 1996, TYPES.

[57]  Gopalan Nadathur,et al.  A Fine-Grained Notation for Lambda Terms and Its Use in Intensional Operations , 1996, J. Funct. Log. Program..

[58]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[59]  Benjamin Werner,et al.  Une Théorie des Constructions Inductives , 1994 .

[60]  Cj Roel Bloo,et al.  Preservation of strong normalisation for explicit substitution , 1995 .

[61]  Paul-Andr Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .

[62]  P. Severi Normalisation in lambda calculus and its relation to type inference , 1996 .