Intercalation dynamics in lithium-ion batteries

A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to reaction rate laws as boundary conditions to handle the transfer of ions between the crystal and the electrolyte. In this thesis, I carefully derive a second set of boundary conditions—necessary to close the original PDE system—via a variational analysis of the free energy functional; I include a thermodynamically-consistent treatment of the reaction rates; I develop a semi-discrete finite volume method for numerical simulations; and I include a careful asymptotic treatment of the dynamical regimes found in different limits of the governing equations. Further, I will present several new findings relevant to batteries: Defect Interactions: When applied to strongly phase-separating, highly anisotropic materials such as LiFePO4, this model predicts phase-transformation waves between the lithiated and unlithiated portions of a crystal. This work extends the analysis of the wave dynamics, and describes a new mechanism for current capacity fade through the interactions of these waves with defects in the particle. Size-Dependent Spinodal and Miscibility Gaps: This work demonstrates that the model is powerful enough to predict that the spinodal and miscibility gaps shrink as the particle size decreases. It is also shown that boundary reactions are another general mechanism for the suppression of phase separation. Multi-Particle Interactions: This work presents the results of parallel simulations of several nearby crystals linked together via common parameters in the boundary conditions. The results demonstrate the so-called “mosaic effect”: the particles tend to fill one at a time, so much so that the particle being filled actually draws lithium out of the other ones. Moreover, it is shown that the smaller particles tend to phase separate first, a phenomenon seen in experiments but difficult to explain with any other theoretical model. Thesis Supervisor: Martin Z. Bazant Title: Associate Professor of Chemical Engineering and Mathematics

[1]  James M. Hyman,et al.  High order finite volume approximations of differential operators on nonuniform grids , 1992 .

[2]  J. Niemantsverdriet,et al.  Chemical kinetics and catalysis , 1995 .

[3]  K. Cheng Theory of Superconductivity , 1948, Nature.

[4]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[5]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[6]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[7]  Christian Masquelier,et al.  Size Effects on Carbon-Free LiFePO4 Powders The Key to Superior Energy Density , 2006 .

[8]  H. Jang,et al.  Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black , 2006 .

[9]  M. G. Evans,et al.  Some applications of the transition state method to the calculation of reaction velocities, especially in solution , 1935 .

[10]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[11]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[12]  D. W. Hoffman,et al.  A Vector Thermodynamics for Anisotropic Surfaces , 1972 .

[13]  G. Ceder,et al.  Elastic properties of olivine LixFePO4 from first principles , 2006 .

[14]  Shin Fujitani,et al.  Study of LiFePO4 by Cyclic Voltammetry , 2007 .

[15]  Philipp Maass,et al.  Novel Surface Modes in Spinodal Decomposition , 1997 .

[16]  Robert Dominko,et al.  Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes , 2007 .

[17]  Jeff Wolfenstine,et al.  Kinetic Study of the Electrochemical FePO 4 to LiFePO 4 Phase Transition , 2007 .

[18]  S. Arrhenius,et al.  ON THE REACTION VELOCITY OF THE INVERSION OF CANE SUGAR BY ACIDS , 1967 .

[19]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[20]  Y. Chiang,et al.  Modeling Particle Size Effects on Phase Stability and Transition Pathways in Nanosized Olivine Cathode Particles , 2008 .

[21]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[22]  R. Weinstock Calculus of Variations: with Applications to Physics and Engineering , 1952 .

[23]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[24]  Heike Emmerich,et al.  The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models , 2003 .

[25]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[26]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[27]  Robert W. Balluffi,et al.  Kinetics Of Materials , 2005 .

[28]  James S. Langer,et al.  Theory of spinodal decomposition in alloys , 1971 .

[29]  R. Bhatia Positive Definite Matrices , 2007 .

[30]  K. Subbaswamy,et al.  Kinetic Model of Stage Transformation and Intercalation in Graphite , 1984 .

[31]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[32]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[33]  Bruno Scrosati,et al.  Modern batteries : an introduction to electrochemical power sources , 2003 .

[34]  Ernst Cohen,et al.  Studies In Chemical Dynamics , 1896 .

[35]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[36]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[37]  Gupta,et al.  Calculus Of Variations With Applications , 2004 .

[38]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[39]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[40]  John O. Thomas,et al.  Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study , 2000 .

[41]  Tsutomu Ohzuku,et al.  Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell , 1990 .

[42]  H. Ahn,et al.  Effect of mechanical activation process parameters on the properties of LiFePO4 cathode material , 2007 .

[43]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[44]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[45]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[46]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[47]  F. P. Bowden,et al.  Chemical Thermodynamics , 1947, Nature.

[48]  Alain Mauger,et al.  Study of the Li-insertion/extraction process in LiFePO4/FePO4 , 2009 .

[49]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.

[50]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[51]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[52]  Peter Y. Zavalij,et al.  Reactivity, stability and electrochemical behavior of lithium iron phosphates , 2002 .

[53]  Xiaodong Wu,et al.  Cracking causing cyclic instability of LiFePO4 cathode material , 2005 .

[54]  Thomas J. Richardson,et al.  Metastable Solid-Solution Phases in the LiFePO4 ∕ FePO4 System , 2007 .

[55]  A. Rodger,et al.  Synthetic metallomolecules as agents for the control of DNA structure. , 2007, Chemical Society reviews.

[56]  Martin Z. Bazant,et al.  Phase-Transformation Wave Dynamics in LiFePO4 , 2008 .

[57]  P. M. Lee,et al.  Random Walks and Random Environments: Volume 1: Random Walks , 1995 .

[58]  Karim Zaghib,et al.  Surface Effects on the Physical and Electrochemical Properties of Thin LiFePO4 Particles , 2008 .

[59]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[60]  H. G. Reik I. Gyarmati: Non-equilibrium Thermodynamics. Field Theory and Variational Principles. Springer-Verlag, Berlin, Heidelberg, New York 1970. 184 Seiten. Preis: DM 38,— , 1971 .

[61]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[62]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[63]  István Gyarmati,et al.  Non-equilibrium thermodynamics : field theory and variational principles , 1970 .

[64]  van der Waals , 2010 .

[65]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[66]  D. Linden Handbook Of Batteries , 2001 .

[67]  R. Huggins Advanced Batteries: Materials Science Aspects , 2008 .

[68]  J. L. Dodd,et al.  Phase Diagram of Li x FePO4 , 2006 .

[69]  Robert A. Huggins,et al.  Thermodynamic and Mass Transport Properties of “ LiAl ” , 1979 .

[70]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[71]  Ole Østerby Five Ways of Reducing the Crank–Nicolson Oscillations , 2003 .

[72]  R. Durrett Random walks and random environments. Volume 1: Random walks , 1996 .

[73]  J. L. Dodd,et al.  Phase diagram of LixFePO4 , 2006 .

[74]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[75]  Dan Davidov,et al.  Intercalation compounds of graphite , 1982 .

[76]  R. Spotnitz Simulation of capacity fade in lithium-ion batteries , 2003 .

[77]  Donghan Kim,et al.  Synthesis of LiFePO4 Nanoparticles in Polyol Medium and Their Electrochemical Properties , 2006 .

[78]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[79]  D. W. Hoffman,et al.  A Vector Thermodynamics for Anisotropic Surfaces—II. Curved and Faceted Surfaces , 1974 .

[80]  M. Giaquinta,et al.  Calculus of Variations I , 1995 .

[81]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[82]  J. Cahn,et al.  A linear theory of thermochemical equilibrium of solids under stress , 1973 .

[83]  H. E. Cook,et al.  Brownian motion in spinodal decomposition , 1970 .

[84]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[85]  S. Pejovnik,et al.  The role of carbon black distribution in cathodes for Li ion batteries , 2003 .

[86]  L. J. Fu,et al.  Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries , 2006 .

[87]  Bruno Scrosati,et al.  A High-Rate, Nanocomposite LiFePO4 ∕ Carbon Cathode , 2005 .

[88]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.

[89]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[90]  W. Craig Carter,et al.  Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 − x FePO4 , 2007 .

[91]  Gerbrand Ceder,et al.  Electrochemical modeling of intercalation processes with phase field models , 2004 .

[92]  J. L. Dodd Phase Composition and Dynamical Studies of Lithium Iron Phosphate , 2007 .

[93]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[94]  Liquan Chen,et al.  New solid-state synthesis routine and mechanism for LiFePO4 using LiF as lithium precursor , 2004 .