A cover based competitive facility location model with continuous demand

[1]  S. Hakimi p-Median theorems for competitive locations , 1986 .

[2]  Z. Drezner,et al.  The p-center location problem in an area , 1996 .

[3]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[4]  Tammy Drezner,et al.  Locating a single new facility among existing unequally attractive facilities , 1994 .

[5]  Oded Berman,et al.  Competitive facility location and design problem , 2007, Eur. J. Oper. Res..

[6]  Tammy Drezner,et al.  Competitive Facility Location in the Plane , 1995 .

[7]  Richard E. Wendell,et al.  Location Theory, Dominance, and Convexity , 1973, Oper. Res..

[8]  Frank Plastria,et al.  AVOIDING CANNIBALISATION AND/OR COMPETITOR REACTION IN PLANAR SINGLE FACILITY LOCATION , 2005 .

[9]  D. T. Lee,et al.  Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.

[10]  Zvi Drezner,et al.  Solving multiple facilities location problems with separated clusters , 2019, Oper. Res. Lett..

[11]  Zvi Drezner,et al.  Solving the multiple competitive facilities location problem , 2002, Eur. J. Oper. Res..

[12]  Atsuyuki Okabe,et al.  The Statistical Analysis through a Computational Method of a Distribution of Points in Relation to its Surrounding Network , 1984 .

[13]  D. Huff A Programmed Solution for Approximating an Optimum Retail Location , 1966 .

[14]  Oded Berman,et al.  Efficient solution approaches for a discrete multi-facility competitive interaction model , 2009, Ann. Oper. Res..

[15]  Zvi Drezner,et al.  Modelling lost demand in competitive facility location , 2012, J. Oper. Res. Soc..

[16]  Patric R. J. Östergård,et al.  More Optimal Packings of Equal Circles in a Square , 1999, Discret. Comput. Geom..

[17]  Jiamin Wang,et al.  Locating service facilities to reduce lost demand , 2002 .

[18]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[19]  Zvi Drezner,et al.  Lost demand in a competitive environment , 2008, J. Oper. Res. Soc..

[20]  Tammy Drezner,et al.  Derived attractiveness of shopping malls , 2006 .

[21]  H. A. Eiselt,et al.  Consumers in Competitive Location Models , 2002 .

[22]  Panos M. Pardalos,et al.  New results in the packing of equal circles in a square , 1995, Discret. Math..

[23]  Zvi Drezner,et al.  The Big Triangle Small Triangle Method for the Solution of Nonconvex Facility Location Problems , 2004, Oper. Res..

[24]  S. Hakimi On locating new facilities in a competitive environment , 1983 .

[25]  Zvi Drezner,et al.  Competitive facilities: market share and location with random utility , 1996 .

[26]  G. O. Wesolowsky,et al.  On the Logit Approach to Competitive Facility Location , 1998 .

[27]  G. Leonardi,et al.  Random utility demand models and service location , 1984 .

[28]  Zvi Drezner,et al.  Competitive location in the plane , 1986, Ann. Oper. Res..

[29]  Zvi Drezner,et al.  Strategic competitive location: improving existing and establishing new facilities , 2012, J. Oper. Res. Soc..

[30]  Zvi Drezner,et al.  A cover-based competitive location model , 2011, J. Oper. Res. Soc..

[31]  Marco Locatelli,et al.  Packing equal circles in a square: a deterministic global optimization approach , 2002, Discret. Appl. Math..

[32]  Oded Berman,et al.  Competitive facility location model with concave demand , 2007, Eur. J. Oper. Res..

[33]  T. Drezner Location of multiple retail facilities with limited budget constraints — in continuous space , 1998 .

[34]  Kazuo Murota,et al.  IMPROVEMENTS OF THE INCREMENTAL METHOD FOR THE VORONOI DIAGRAM WITH COMPUTATIONAL COMPARISON OF VARIOUS ALGORITHMS , 1984 .

[35]  Charles ReVelle,et al.  THE MAXIMUM CAPTURE OR “SPHERE OF INFLUENCE” LOCATION PROBLEM: HOTELLING REVISITED ON A NETWORK* , 1986 .

[36]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[37]  Patrick Siarry,et al.  Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions , 2003, Eur. J. Oper. Res..

[38]  Tammy Drezner,et al.  Cannibalization in a Competitive Environment , 2011 .

[39]  Z. Drezner,et al.  Replacing continuous demand with discrete demand in a competitive location model , 1997 .

[40]  Uni Martinsen,et al.  Environmental practices as offerings and requirements on the logistics market , 2014, Logist. Res..

[41]  Zvi Drezner,et al.  Finding the optimal solution to the Huff based competitive location model , 2004, Comput. Manag. Sci..

[42]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[43]  H. A. Eiselt Equilibria in Competitive Location Models , 2011 .

[44]  Morton E. O'Kelly Inferred Ideal Weights for Multiple Facilities , 1995 .

[45]  Zvi Drezner,et al.  The multiple markets competitive location problem , 2016, Kybernetes.

[46]  F. Fetter The Economic Law of Market Areas , 1924 .

[47]  David L. Huff,et al.  Defining and Estimating a Trading Area , 1964 .

[48]  Z. Drezner Competitive location strategies for two facilities , 1982 .

[49]  Raymond J. Adams,et al.  The Multidimensional Random Coefficients Multinomial Logit Model , 1997 .

[50]  H. Hotelling Stability in Competition , 1929 .

[51]  Tammy Drezner,et al.  A review of competitive facility location in the plane , 2014, Logist. Res..

[52]  Zvi Drezner,et al.  Single Facility lp-Distance Minimax Location , 1980, SIAM J. Algebraic Discret. Methods.

[53]  Atsuyuki Okabe,et al.  Using Voronoi Diagrams , 1995 .

[54]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[55]  Zvi Drezner,et al.  The minimum equitable radius location problem with continuous demand , 2009, Eur. J. Oper. Res..