Host-Protozoan Interactions Protect from Mucosal Infections through Activation of the Inflammasome

[1]  P. Keeling,et al.  Microsporidia – Emergent Pathogens in the Global Food Chain , 2016, Trends in parasitology.

[2]  Xiaodi Wu,et al.  Transcriptional Control of Dendritic Cell Development. , 2016, Annual review of immunology.

[3]  P. Keeling,et al.  Microsporidia - Emergent Pathogens in the Global Food Chain. , 2016, Trends in parasitology.

[4]  W. Garrett,et al.  Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut , 2016, Science.

[5]  J. Lukeš,et al.  Are Human Intestinal Eukaryotes Beneficial or Commensals? , 2015, PLoS pathogens.

[6]  Xiaodi Wu,et al.  Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. , 2015, Immunity.

[7]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[8]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[9]  Hongyu Zhao,et al.  Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. , 2013, Immunity.

[10]  C. Dinarello,et al.  Interleukin-18 and IL-18 Binding Protein , 2013, Front. Immunol..

[11]  A. Dzutsev,et al.  Intraluminal containment of commensal outgrowth in the gut during infection-induced dysbiosis. , 2013, Cell host & microbe.

[12]  W. Petri,et al.  Host Immune Response to Intestinal Amebiasis , 2013, PLoS pathogens.

[13]  Inacio Mandomando,et al.  Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study , 2013, The Lancet.

[14]  S. Gudjonsson,et al.  IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. , 2013, Immunity.

[15]  N. McGovern,et al.  IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses , 2013, Immunity.

[16]  Sean C. Bendall,et al.  viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia , 2013, Nature Biotechnology.

[17]  F. Powrie,et al.  Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model , 2013, The Journal of experimental medicine.

[18]  A. Petersen,et al.  Active ulcerative colitis associated with low prevalence of Blastocystis and Dientamoeba fragilis infection , 2013, Scandinavian journal of gastroenterology.

[19]  W. Shi,et al.  The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote , 2013, Nucleic acids research.

[20]  Eric Vivier,et al.  Innate lymphoid cells — a proposal for uniform nomenclature , 2013, Nature Reviews Immunology.

[21]  C. Datz,et al.  Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth , 2012, Nature.

[22]  C. Harris,et al.  Chronic epithelial NF-κB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation , 2012, Proceedings of the National Academy of Sciences.

[23]  M. Merad,et al.  Mononuclear phagocyte diversity in the intestine , 2012, Immunologic research.

[24]  L. Zitvogel,et al.  Inflammasomes in carcinogenesis and anticancer immune responses , 2012, Nature Immunology.

[25]  C. Brayton,et al.  Of Mice and Microflora , 2012, Veterinary pathology.

[26]  D. Stark,et al.  The ambiguous life of Dientamoeba fragilis: the need to investigate current hypotheses on transmission , 2011, Parasitology.

[27]  U. Pannicke,et al.  Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt(+) innate lymphocytes. , 2010, Immunity.

[28]  C. Elson,et al.  Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis , 2010, The Journal of experimental medicine.

[29]  K. Murphy,et al.  Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells , 2010, The Journal of experimental medicine.

[30]  F. Ginhoux,et al.  Origin and functional heterogeneity of non‐lymphoid tissue dendritic cells in mice , 2010, Immunological reviews.

[31]  Dirk E. Smith,et al.  The IL-1 family: regulators of immunity , 2010, Nature Reviews Immunology.

[32]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[33]  Steffen Jung,et al.  Intestinal lamina propria dendritic cell subsets have different origin and functions. , 2009, Immunity.

[34]  F. Ginhoux,et al.  Origin of the lamina propria dendritic cell network. , 2009, Immunity.

[35]  Tomoyuki Sato,et al.  Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites , 2009, BMC Evolutionary Biology.

[36]  Yoshiyuki Sakaki,et al.  Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell , 2008, Proceedings of the National Academy of Sciences.

[37]  N. Mukaida,et al.  Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. , 2008, The Journal of clinical investigation.

[38]  A. Iwasaki Mucosal dendritic cells. , 2007, Annual review of immunology.

[39]  C. Dinarello,et al.  IL-18 in autoimmunity: review. , 2006, European cytokine network.

[40]  E. Pamer,et al.  Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2 , 2006, Nature Immunology.

[41]  H. Kiyono,et al.  CCR7 Is Critically Important for Migration of Dendritic Cells in Intestinal Lamina Propria to Mesenteric Lymph Nodes1 , 2006, The Journal of Immunology.

[42]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Hogardt,et al.  Pretreatment of Mice with Streptomycin Provides a Salmonella enterica Serovar Typhimurium Colitis Model That Allows Analysis of Both Pathogen and Host , 2003, Infection and Immunity.

[44]  G. Trinchieri,et al.  Interleukin-12 and the regulation of innate resistance and adaptive immunity , 2003, Nature Reviews Immunology.

[45]  Fiona Powrie,et al.  An Essential Role for Interleukin 10 in the Function of Regulatory T Cells That Inhibit Intestinal Inflammation , 1999, The Journal of experimental medicine.

[46]  E. Wolf,et al.  CCR7 Coordinates the Primary Immune Response by Establishing Functional Microenvironments in Secondary Lymphoid Organs , 1999, Cell.

[47]  R. Kucherlapati,et al.  Mouse models for colorectal cancer , 1999, Oncogene.

[48]  F. Powrie,et al.  Induction of Inflammatory Bowel Disease in Immunodeficient Mice by Depletion of Regulatory T Cells , 1999, Current protocols in immunology.

[49]  M. Su,et al.  Activation of Interferon-γ Inducing Factor Mediated by Interleukin-1β Converting Enzyme , 1997, Science.

[50]  S. Imai,et al.  A new method for the serial cultivation of Tritrichomonas muris. , 1983, Nihon juigaku zasshi. The Japanese journal of veterinary science.

[51]  L. S. Diamond Axenic cultivation of Trichomonas tenax, the oral flagellate of man. I. Establishment of cultures. , 1962, The Journal of protozoology.

[52]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[53]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[54]  Cedric E. Ginestet ggplot2: Elegant Graphics for Data Analysis , 2011 .

[55]  J. Tschopp,et al.  The Inflammasomes , 2010, Cell.

[56]  D. Stark,et al.  Irritable bowel syndrome: a review on the role of intestinal protozoa and the importance of their detection and diagnosis. , 2007, International journal for parasitology.

[57]  M Kurimoto,et al.  Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. , 1997, Science.