VQE-generated Quantum Circuit Dataset for Machine Learning
暂无分享,去创建一个
[1] Xuehai Qian,et al. QuEst: Graph Transformer for Quantum Circuit Reliability Estimation , 2022, ArXiv.
[2] J. Eisert,et al. A super-polynomial quantum-classical separation for density modelling , 2022, Physical Review A.
[3] Patrick J. Coles,et al. Challenges and opportunities in quantum machine learning , 2022, Nature Computational Science.
[4] A. Perdomo-Ortiz,et al. Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the Race to Practical Quantum Advantage , 2022, 2208.13673.
[5] Jordan S. Cotler,et al. Quantum advantage in learning from experiments , 2021, Science.
[6] George H. Booth,et al. The Variational Quantum Eigensolver: A review of methods and best practices , 2021, Physics Reports.
[7] C. Ferrie,et al. QDataSet, quantum datasets for machine learning , 2021, Scientific Data.
[8] A. Green,et al. Matrix product state pre-training for quantum machine learning , 2021, Quantum Science and Technology.
[9] Andrew W. Cross,et al. OpenQASM 3: A Broader and Deeper Quantum Assembly Language , 2021, ACM Transactions on Quantum Computing.
[10] B. Clark,et al. Unitary block optimization for variational quantum algorithms , 2021, 2102.08403.
[11] Ntwali Bashige Toussaint,et al. Generation of High-Resolution Handwritten Digits with an Ion-Trap Quantum Computer , 2020, Physical Review X.
[12] M. Cerezo,et al. Entangled Datasets for Quantum Machine Learning , 2021, ArXiv.
[13] Vedran Dunjko,et al. Parametrized Quantum Policies for Reinforcement Learning , 2021, NeurIPS.
[14] Keisuke Fujii,et al. Qulacs: a fast and versatile quantum circuit simulator for research purpose , 2020, Quantum.
[15] H. Neven,et al. Power of data in quantum machine learning , 2020, Nature Communications.
[16] K. Temme,et al. A rigorous and robust quantum speed-up in supervised machine learning , 2020, Nature Physics.
[17] Keisuke Fujii,et al. Experimental quantum kernel trick with nuclear spins in a solid , 2019, npj Quantum Information.
[18] Yvette de Sereville,et al. Exploring entanglement and optimization within the Hamiltonian Variational Ansatz , 2020, PRX Quantum.
[19] Ievgeniia Oshurko. Quantum Machine Learning , 2020, Quantum Computing.
[20] Patrick J. Coles,et al. An Adaptive Optimizer for Measurement-Frugal Variational Algorithms , 2019, Quantum.
[21] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.
[22] Franco Nori,et al. Experimental kernel-based quantum machine learning in finite feature space , 2019, Scientific Reports.
[23] Andrei Novikov,et al. PyClustering: Data Mining Library , 2019, J. Open Source Softw..
[24] Keisuke Fujii,et al. Sequential minimal optimization for quantum-classical hybrid algorithms , 2019, Physical Review Research.
[25] T. Martínez,et al. Quantum Computation of Electronic Transitions Using a Variational Quantum Eigensolver. , 2019, Physical review letters.
[26] Ken M. Nakanishi,et al. Subspace-search variational quantum eigensolver for excited states , 2018, Physical Review Research.
[27] Kristan Temme,et al. Supervised learning with quantum-enhanced feature spaces , 2018, Nature.
[28] Maria Schuld,et al. Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.
[29] Alejandro Perdomo-Ortiz,et al. A generative modeling approach for benchmarking and training shallow quantum circuits , 2018, npj Quantum Information.
[30] Lei Wang,et al. Differentiable Learning of Quantum Circuit Born Machine , 2018, Physical Review A.
[31] H. Neven,et al. Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.
[32] Keisuke Fujii,et al. Quantum circuit learning , 2018, Physical Review A.
[33] Hartmut Neven,et al. Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.
[34] Vedran Dunjko,et al. Exponential improvements for quantum-accessible reinforcement learning , 2017, 1710.11160.
[35] Roland Vollgraf,et al. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.
[36] J. Gambetta,et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.
[37] M. Hastings,et al. Progress towards practical quantum variational algorithms , 2015, 1507.08969.
[38] M. Cugmas,et al. On comparing partitions , 2015 .
[39] Alán Aspuru-Guzik,et al. A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.
[40] W. Marsden. I and J , 2012 .
[41] Geoffrey E. Hinton,et al. Visualizing Data using t-SNE , 2008 .
[42] John Platt,et al. Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .
[43] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[44] J. Kruskal. Nonmetric multidimensional scaling: A numerical method , 1964 .