Using Chaos to Obtain Global Solutions in Computational Kinematics
暂无分享,去创建一个
[1] G. Julia. Mémoire sur l'itération des fonctions rationnelles , 1918 .
[2] P. Fatou,et al. Sur les équations fonctionnelles , 1920 .
[3] Steven H. Strogatz,et al. Nonlinear Dynamics and Chaos , 2024 .
[4] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[5] Charles W. Wampler,et al. On the Inverse Kinematics of Redundant Manipulators , 1988, Int. J. Robotics Res..
[6] R. Kellogg,et al. Pathways to solutions, fixed points, and equilibria , 1983 .
[7] B. Roth,et al. Synthesis of Path-Generating Mechanisms by Numerical Methods , 1963 .
[8] Vojin Tomislav Jovanovic. Identifying, utilizing and improving chaotic numerical instabilities in computational kinematics , 1997 .
[9] A. Morgan,et al. Errata: Computing all solutions to polynomial systems using homotopy continuation , 1987 .
[10] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[11] A. Morgan,et al. SOLVING THE 6R INVERSE POSITION PROBLEM USING A GENERIC-CASE SOLUTION METHODOLOGY , 1991 .
[12] John Baillieul,et al. Kinematic programming alternatives for redundant manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.
[13] Ferdinand Freudenstein,et al. Numerical Solution of Systems of Nonlinear Equations , 1963, JACM.
[14] S. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .
[15] B. Roth,et al. Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators , 1995 .
[16] E. Allgower,et al. Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .
[17] A. Morgan,et al. A homotopy for solving general polynomial systems that respects m-homogeneous structures , 1987 .
[18] Leo Joskowicz,et al. Computational Kinematics , 1991, Artif. Intell..