Using Chaos to Obtain Global Solutions in Computational Kinematics

In this paper we examine the sensitive dependence on the initial conditions of the Newton-Raphson search technique. It is demonstrated that this sensitivity has a fractal nature which can be effectively utilized to find all solutions to a nonlinear equation. The developed technique uses an important feature of fractals to preserve shape of basins of attraction on infinitely small scales.

[1]  G. Julia Mémoire sur l'itération des fonctions rationnelles , 1918 .

[2]  P. Fatou,et al.  Sur les équations fonctionnelles , 1920 .

[3]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[4]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[5]  Charles W. Wampler,et al.  On the Inverse Kinematics of Redundant Manipulators , 1988, Int. J. Robotics Res..

[6]  R. Kellogg,et al.  Pathways to solutions, fixed points, and equilibria , 1983 .

[7]  B. Roth,et al.  Synthesis of Path-Generating Mechanisms by Numerical Methods , 1963 .

[8]  Vojin Tomislav Jovanovic Identifying, utilizing and improving chaotic numerical instabilities in computational kinematics , 1997 .

[9]  A. Morgan,et al.  Errata: Computing all solutions to polynomial systems using homotopy continuation , 1987 .

[10]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[11]  A. Morgan,et al.  SOLVING THE 6R INVERSE POSITION PROBLEM USING A GENERIC-CASE SOLUTION METHODOLOGY , 1991 .

[12]  John Baillieul,et al.  Kinematic programming alternatives for redundant manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[13]  Ferdinand Freudenstein,et al.  Numerical Solution of Systems of Nonlinear Equations , 1963, JACM.

[14]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[15]  B. Roth,et al.  Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators , 1995 .

[16]  E. Allgower,et al.  Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .

[17]  A. Morgan,et al.  A homotopy for solving general polynomial systems that respects m-homogeneous structures , 1987 .

[18]  Leo Joskowicz,et al.  Computational Kinematics , 1991, Artif. Intell..