A review of alternatives traditional cementitious binders for engineering improvement of soils

There is a burgeoning interest in the development, characterisation and implementation of alternatives to cement and other cementitious binders in civil engineering frameworks (i.e. ground improvement). This interest is in part because of the technical advantages and related to environmental and energy issues, particularly in CO2 gas emission challenges in another part. The current paper presents a brief history and a review of alternatives for traditional cementitious binders including pozzolanic materials, alkali-activated materials and reinforcement inclusions. In this respect, the summaries and analyses of the most significant research findings attempt to elucidate chemistry and reaction mechanisms, environmental benefits and underline the reasons why these promising materials have become widely used in construction industry and specifically for the purpose of soil improvement over the last 30 years. Finally, the paper proposes further research and development topics and suggests steps forward to enhance the potential of these materials for ground improvement.

[1]  Bujang B. K. Huat,et al.  Effect of Chemical Admixtures on the Engineering Properties of Tropical Peat Soils , 2005 .

[2]  Said Kenai,et al.  Use of Natural Pozzolana and Lime for Stabilization of Cohesive Soils , 2011 .

[3]  John L. Provis,et al.  Carbonate mineral addition to metakaolin-based geopolymers , 2008 .

[4]  K. Sagoe-Crentsil,et al.  Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems , 2007 .

[5]  Faiz Uddin Ahmed Shaikh,et al.  Review of mechanical properties of short fibre reinforced geopolymer composites , 2013 .

[6]  J. Deventer,et al.  Understanding the relationship between geopolymer composition, microstructure and mechanical properties , 2005 .

[7]  Mohd Zamin Jumaat,et al.  Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar , 2014 .

[8]  Bujang B. K. Huat,et al.  Stabilization of clayey soil using ultrafine palm oil fuel ash (POFA) and cement , 2015 .

[9]  Stephanie Glendinning,et al.  Deep soft soil improvement by alkaline activation , 2011 .

[10]  T. Cheng,et al.  Fire-resistant geopolymer produced by granulated blast furnace slag , 2003 .

[11]  Sung-Sik Park,et al.  Effect of fiber reinforcement and distribution on unconfined compressive strength of fiber-reinforced cemented sand , 2009 .

[12]  Ernst Worrell,et al.  Emission Reduction of Greenhouse Gases from the Cement Industry , 2003 .

[13]  J. C. Swanepoel,et al.  Utilisation of fly ash in a geopolymeric material , 2002 .

[14]  Arvind Kumar,et al.  Influence of Fly Ash, Lime, and Polyester Fibers on Compaction and Strength Properties of Expansive Soil , 2007 .

[15]  Stephen J. Foster,et al.  Sustainability with Ultra-High Performance and Geopolymer Concrete Construction , 2012 .

[16]  Tiesong Lin,et al.  In situ crack growth observation and fracture behavior of short carbon fiber reinforced geopolymer matrix composites , 2010 .

[17]  R. M. Brooks,et al.  Soil stabilization with flyash and rice husk ash. , 2009 .

[18]  E. G. Akpokodje,et al.  The stabilization of some arid zone soils with cement and lime , 1985, Quarterly Journal of Engineering Geology.

[19]  M. Grutzeck,et al.  Zeolite formation in alkali-activated cementitious systems , 2004 .

[20]  Koji Sakai,et al.  Concrete technology for a sustainable development in the 21st century , 1999 .

[21]  E. Gartner Industrially interesting approaches to “low-CO2” cements ☆ , 2004 .

[22]  Haihong Li,et al.  Synthesis and mechanical properties of metakaolinite-based geopolymer , 2005 .

[23]  M. Jain,et al.  Fly ash – waste management and overview : A Review , 2014 .

[24]  F. P. Glasser,et al.  Chemically-bonded cementitious materials based on metakaolin , 1992 .

[25]  Jay G. Sanjayan,et al.  Comparative deflection hardening behavior of short fiber reinforced geopolymer composites , 2014 .

[26]  Chai Jaturapitakkul,et al.  Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer , 2010 .

[27]  Joseph Davidovits,et al.  X-Ray Analysis and X-Ray Diffraction of Casing Stones from the Pyramids of Egypt, and the Limestone of the Associated Quarries. , 1984 .

[28]  Eddie,et al.  Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber , 2008 .

[29]  Prinya Chindaprasirt,et al.  Preparation of fly ash and rice husk ash geopolymer , 2009 .

[30]  Craig H. Benson,et al.  Stabilizing Soft Fine-Grained Soils with Fly Ash , 2006 .

[31]  Martin Schmücker,et al.  Advances in Understanding the Synthesis Mechanisms of New Geopolymeric Materials , 2011 .

[32]  Omer Faruk Capar,et al.  Using Ground Granulated Blast Furnace Slag with Seawater as Soil Additives in Lime-Clay Stabilization , 2011 .

[33]  Rahman Saidur,et al.  A critical review on energy use and savings in the cement industries , 2011 .

[34]  Longtu Li,et al.  A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements , 2010 .

[35]  Zhang Yunsheng,et al.  Synthesis and heavy metal immobilization behaviors of slag based geopolymer. , 2007, Journal of hazardous materials.

[36]  D. H. Gray,et al.  Static Response of Sands Reinforced with Randomly Distributed Fibers , 1990 .

[37]  Faisal Haji Ali,et al.  Use of rice husk ash to enhance lime treatment of soil , 1992 .

[38]  P. L. Pratt,et al.  Alkali-activated slag cement and concrete: a review of properties and problems , 1995 .

[39]  Waltraud M. Kriven,et al.  The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers , 2007 .

[40]  J. Deventer,et al.  The geopolymerisation of alumino-silicate minerals , 2000 .

[41]  Sven-Erik Johansson,et al.  The Function of Different Binding Agents in Deep Stabilization Mårten , 2002 .

[42]  H. Damon Matthews,et al.  The proportionality of global warming to cumulative carbon emissions , 2009, Nature.

[43]  Daniel V. Oliveira,et al.  Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction , 2012 .

[44]  R. K. Dixon,et al.  Mitigation and Adaptation Strategies for Global Change , 1998 .

[45]  Paulo J. Venda Oliveira,et al.  Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders , 2015 .

[46]  F. Bell,et al.  LIME STABILIZATION OF CLAY MINERALS AND SOILS , 1996 .

[47]  Suksun Horpibulsuk,et al.  Soil Stabilization by Calcium Carbide Residue and Fly Ash , 2012 .

[48]  S. R. Kaniraj,et al.  Behavior of Cement-Stabilized Fiber-Reinforced Fly Ash-Soil Mixtures , 2001 .

[49]  Stephanie Glendinning,et al.  Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation , 2013 .

[50]  K. Hossain,et al.  Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes , 2011 .

[51]  J.S.J. van Deventer,et al.  The Role of Mathematical Modelling and Gel Chemistry in Advancing Geopolymer Technology , 2005 .

[52]  D Hardjito,et al.  Fly Ash-Based Geopolymer Concrete , 2005 .

[53]  Divyateja Sarapu,et al.  Potentials of rice husk ash for soil stabilization , 2016 .

[54]  Rubina Chaudhary,et al.  Mechanism of geopolymerization and factors influencing its development: a review , 2007 .

[55]  Mohd Warid Hussin,et al.  Sulfuric acid resistance of blended ash geopolymer concrete , 2013 .

[56]  Said Kenai,et al.  Effect of the combination of lime and natural pozzolana on the compaction and strength of soft clayey soils: a preliminary study , 2012, Environmental Earth Sciences.

[57]  C. Shi,et al.  New cements for the 21st century: The pursuit of an alternative to Portland cement , 2011 .

[58]  H. N. Ramesh,et al.  Compaction and strength behavior of lime-coir fiber treated Black Cotton soil , 2010 .

[59]  Ernst Worrell,et al.  CO2 Emission Trends in the Cement Industry: An International Comparison , 2002 .

[60]  J.S.J. van Deventer,et al.  The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics , 1999 .

[61]  Sayyed Mahdi Hejazi,et al.  A simple review of soil reinforcement by using natural and synthetic fibers , 2012 .

[62]  Charles Wang Wai Ng,et al.  Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil , 2006 .

[63]  J.S.J. van Deventer,et al.  The characterisation of source materials in fly ash-based geopolymers , 2003 .

[64]  Ángel Palomo,et al.  Alkali-activated fly ashes: A cement for the future , 1999 .

[65]  B. Mohanty,et al.  Performance evaluation of silty sand subgrade reinforced with fly ash and fibre , 2008 .

[66]  Zainal Arifin Ahmad,et al.  Evolution of alkaline activated ground blast furnace slag–ultrafine palm oil fuel ash based concrete , 2014 .

[67]  John L. Provis,et al.  Engineering and durability properties of concretes based on alkali-activated granulated blast furnac , 2012 .

[68]  A. S. M. Abdul Awal,et al.  PROPERTIES OF CONCRETE CONTAINING HIGH VOLUME PALM OIL FUEL ASH: A SHORT-TERM INVESTIGATION , 2011 .

[69]  Grant C. Lukey,et al.  Effect of Blast Furnace Slag Addition on Microstructure and Properties of Metakaolinite Geopolymeric Materials , 2012 .

[70]  S. Kolias,et al.  Stabilisation of clayey soils with high calcium fly ash and cement , 2005 .

[71]  Y. M. Liew,et al.  Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers , 2012 .

[72]  J. O. Ailin Nur,et al.  Study of bearing capacity of lime-cement columns with pulverized fuel ash for soil stabilization using laboratory model , 2011 .

[73]  S. Wild,et al.  Soil Stabilization using Lime-Activated Ground Granulated Blast Furnace Slag , 1998 .

[74]  E. Allouche,et al.  Factors affecting the suitability of fly ash as source material for geopolymers , 2010 .

[75]  D. H. Gray,et al.  Mechanics of Fiber Reinforcement in Sand , 1983 .

[76]  Suksun Horpibulsuk,et al.  ENGINEERING BEHAVIOR OF CEMENT STABILIZED CLAY AT HIGH WATER CONTENT , 2001 .

[77]  Hua Xu,et al.  Geopolymerisation of multiple minerals , 2002 .

[78]  J. Davidovits PROPERTIES OF GEOPOLYMER CEMENTS , 1994 .

[79]  Nilo Cesar Consoli,et al.  Variables controlling strength of fibre-reinforced cemented soils , 2013 .

[80]  N. Roussel,et al.  An environmental evaluation of geopolymer based concrete production: reviewing current research trends , 2011 .

[81]  Young-Su Kim,et al.  Unconfined Compressive Strength of Cemented Sand Reinforced with Short Fibers , 2008 .

[82]  H. P. Singh,et al.  IMPROVEMENT IN CBR VALUE OF SOIL REINFORCED WITH JUTE FIBER , 2013 .

[83]  Yaolin Yi,et al.  Alkali-Activated Ground-Granulated Blast Furnace Slag for Stabilization of Marine Soft Clay , 2015 .

[84]  Chunling Li,et al.  Mechanical response of fiber-reinforced soil , 2005 .

[85]  Metin Arikan,et al.  High Volume Mineral Additive for ECO- Cement , 2002 .

[86]  Zhang Yunsheng,et al.  Composition design and microstructural characterization of calcined kaolin-based geopolymer cement , 2010 .

[87]  Matthias Fawer,et al.  Life cycle inventories for the production of sodium silicates , 1999 .

[88]  D. H. Gray,et al.  BEHAVIOR OF FABRIC- VERSUS FIBER-REINFORCED SAND , 1986 .

[89]  V. Papadakis,et al.  Supplementary cementing materials in concrete: Part I: efficiency and design , 2002 .

[90]  K. Sagoe-Crentsil,et al.  Relationships between composition, structure and strength of inorganic polymers , 2005 .

[91]  Henri Vidal,et al.  THE PRINCIPLE OF REINFORCED EARTH , 1969 .

[92]  Roslan Hashim,et al.  Stabilization of residual soil with rice husk ash and cement , 2005 .

[93]  S. M. Marandi,et al.  Strength and Ductility of Randomly Distributed Palm Fibers Reinforced Silty-Sand Soils , 2008 .

[94]  K. S. Gandhi,et al.  Expansive Soil Stabilization Using Bagasse Ash , 2012 .

[95]  K. Sagoe-Crentsil,et al.  Relationships between composition, structure and strength of inorganic polymers , 2005 .

[96]  Daniel V. Oliveira,et al.  Assessing the production of jet mix columns using alkali activated waste based on mechanical and financial performance and CO2 (eq) emissions , 2015 .

[97]  Mohd Zamin Jumaat,et al.  Durability and mechanical properties of self-compacting concrete incorporating palm oil fuel ash , 2016 .

[98]  R. H. Atkinson Recent advances in the applied chemistry of the rare metals. Jubilee memorial lecture , 1940 .

[99]  Zainal Arifin Ahmad,et al.  Synthesis of geopolymer from large amounts of treated palm oil fuel ash: Application of the Taguchi method in investigating the main parameters affecting compressive strength , 2014 .

[100]  Jay G. Sanjayan,et al.  Alkali activation of Australian slag cements , 1999 .

[101]  Mohamad Nidzam Rahmat,et al.  Effects of mellowing sulfate-bearing clay soil stabilized with wastepaper sludge ash for road construction , 2011 .

[102]  Jan R. Prusinski,et al.  Effectiveness of Portland Cement and Lime in Stabilizing Clay Soils , 1999 .

[103]  Masashi Kamon,et al.  Combining Industrial Wastes with Lime for Soil Stabilization , 1991 .

[104]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[105]  S. P. Mehrotra,et al.  Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer , 2010, Journal of Materials Science.

[106]  R. Sridhar,et al.  Effect of random inclusion of sisal fibre on strength behaviour of soil , 2002 .

[107]  F. Ramírez,et al.  Types of Waste for the Production of Pozzolanic Materials – A Review , 2012 .

[108]  Jian Yu,et al.  Properties and microstructure of the hardened alkali-activated red mud–slag cementitious material , 2003 .

[109]  J. W. P. and,et al.  Characterization of Fly-Ash-Based Geopolymeric Binders Activated with Sodium Aluminate , 2002 .

[110]  Abir Al-Tabbaa,et al.  Sustainable binders for soil stabilisation , 2010 .

[111]  J.S.J. van Deventer,et al.  The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications☆ , 1997 .

[112]  V. Sirivivatnanon,et al.  Workability and strength of coarse high calcium fly ash geopolymer , 2007 .

[113]  J M Hoover,et al.  Performance of Randomly Oriented, Fiber-Reinforced Roadway Soils: A Laboratory and Field Investigation , 1980 .

[114]  Nurhayat Degirmenci,et al.  Application of phosphogypsum in soil stabilization , 2007 .

[115]  J. I. Escalante García,et al.  Cementitious composites of pulverised fuel ash and blast furnace slag activated by sodium silicate: effect of Na2O concentration and modulus , 2006 .

[116]  S. Wild,et al.  Influence of ground granulated blastfurnace slag on the sulphate resistance of lime-stabilized kaolinite , 1999 .

[117]  Mingjiang Tao,et al.  Experimental feasibility study of geopolymer as the next-generation soil stabilizer , 2013 .

[118]  Nilo Cesar Consoli,et al.  Key parameter for tensile and compressive strength of fibre-reinforced soil–lime mixtures , 2012 .

[119]  Jelena Srebric,et al.  Development of Straw-cement Composite Sustainable Building Material for Low-cost Housing in Egypt , 2007 .

[120]  Wei Gao,et al.  Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil , 2007 .

[121]  Musa Alhassan,et al.  Potentials of Rice Husk Ash for Soil Stabilization , 2008 .

[122]  Anja Buchwald,et al.  Life-cycle analysis of geopolymers , 2009 .

[123]  B. K. HuatBujang,et al.  Soil stabilisation with alkali-activated agro-waste , 2015 .

[124]  J.S.J. van Deventer,et al.  THE EFFECT OF COMPOSITION AND TEMPERATURE ON THE PROPERTIES OF FLY ASH- AND KAOLINITE -BASED GEOPOLYMERS , 2002 .

[125]  Bujang B. K. Huat,et al.  A review of alternatives traditional cementitious binders for engineering improvement of soils , 2016 .

[126]  Mohamed Rouainia,et al.  The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils , 2013 .

[127]  Sudong Hua,et al.  Activating process of geopolymer source material: Kaolinite , 2009 .

[128]  Prashant Sharma,et al.  GENETIC APPROACH TO PARALLEL SCHEDULING , 2013 .

[129]  D. Lin,et al.  Stabilization treatment of soft subgrade soil by sewage sludge ash and cement. , 2009, Journal of hazardous materials.

[130]  Zainal Arifin Ahmad,et al.  Strength and microstructure of alkali-activated binary blended binder containing palm oil fuel ash and ground blast-furnace slag , 2014 .

[131]  Della M. Roy,et al.  Alkali Activated Cementitious Materials: An Overview , 1991 .

[132]  J. Ideker,et al.  Advances in alternative cementitious binders , 2011 .

[133]  J. Davidovits Geopolymers : inorganic polymeric new materials , 1991 .

[134]  Fernando Pacheco-Torgal,et al.  Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products , 2008 .

[135]  Dimitris Dermatas,et al.  UTILIZATION OF FLY ASH FOR STABILIZATION/SOLIDIFICATION OF HEAVY METAL CONTAMINATED SOILS , 2003 .

[136]  M. H. Maher,et al.  MECHANICAL PROPERTIES OF KAOLINITE/FIBER SOIL COMPOSITE , 1994 .

[137]  K. Sagoe-Crentsil,et al.  Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems , 2007 .

[138]  Pitthaya Jamsawang,et al.  Use of steel and polypropylene fibers to improve flexural performance of deep soil–cement column , 2012 .

[139]  J. Deventer,et al.  Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. , 2007, Journal of hazardous materials.

[140]  G. Corder,et al.  Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement , 2011 .

[141]  F. Ramírez,et al.  The use of non-conventional additives in Marls stabilization , 2011 .