Size constrained k simple polygons

Given a geometric space and a set of weighted spatial points, the Size Constrained k Simple Polygons (SCkSP) problem identifies k simple polygons that maximize the total weights of the spatial points covered by the polygons and meet the polygon size constraint. The SCkSP problem is important for many societal applications including hotspot area detection and resource allocation. The problem is NP-hard; it is computationally challenging because of the large number of spatial points and the polygon size constraint. Our preliminary work introduced the Nearest Neighbor Triangulation and Merging (NNTM) algorithm for SCkSP to meet the size constraint while maximizing the total weights of the spatial points. However, we find that the performance of the NNTM algorithm is dependent on the t-nearest graph. In this paper, we extend our previous work and propose a novel approach that outperforms our prior work. Experiments using Chicago crime and U.S. Federal wildfire datasets demonstrate that the proposed algorithm significantly reduces the computational cost of our prior work and produces a better solution.

[1]  KwangSoo Yang,et al.  Size constrained k simple polygons , 2018, GeoInformatica.

[2]  Minghui Jiang On Covering Points with Minimum Turns , 2012, FAW-AAIM.

[3]  Steven Skiena,et al.  On Minimum-Area Hulls , 1998, Algorithmica.

[4]  Xiaowei Xu,et al.  SCAN: a structural clustering algorithm for networks , 2007, KDD '07.

[5]  Jae-Gil Lee,et al.  Traffic Density-Based Discovery of Hot Routes in Road Networks , 2007, SSTD.

[6]  Sándor P. Fekete,et al.  Area optimization of simple polygons , 1993, SCG '93.

[7]  Amal Dev Parakkat,et al.  An Empirical Study on Randomized Optimal Area Polygonization of Planar Point Sets , 2016, ACM J. Exp. Algorithmics.

[8]  KwangSoo Yang,et al.  Distance-Constrained k Spatial Sub-Networks: A Summary of Results , 2016, GIScience.

[9]  Leonidas J. Guibas,et al.  Finding extremal polygons , 1982, STOC '82.

[10]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[11]  Balázs Keszegh,et al.  On Polygons Excluding Point Sets , 2010, CCCG.

[12]  Pasi Fränti,et al.  Balanced K-Means for Clustering , 2014, S+SSPR.

[13]  David Eppstein,et al.  Finding minimum areak-gons , 1992, Discret. Comput. Geom..

[14]  P. Lockhart,et al.  Introduction to Geometry , 1940, The Mathematical Gazette.

[15]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[16]  Binhai Zhu,et al.  Frontiers in Algorithmics and Algorithmic Aspects in Information and Management , 2013, Lecture Notes in Computer Science.

[17]  D. Hearn,et al.  The Minimum Covering Sphere Problem , 1972 .

[18]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[19]  Joseph S. B. Mitchell,et al.  Minimum-perimeter enclosures , 2008, Inf. Process. Lett..

[20]  Thomas M. Liebling,et al.  Finding minimum area simple pentagons , 1997, Oper. Res. Lett..

[21]  Donald W. Hearn,et al.  Efficient Algorithms for the (Weighted) Minimum Circle Problem , 1982, Oper. Res..

[22]  Sergey Bereg,et al.  Smallest Maximum-Weight Circle for Weighted Points in the Plane , 2015, ICCSA.

[23]  Ayhan Demiriz,et al.  Constrained K-Means Clustering , 2000 .

[24]  Bart Braden The Surveyor's Area Formula , 1986 .

[25]  Viktor Blåsjö,et al.  The Isoperimetric Problem , 2005, Am. Math. Mon..

[26]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.

[27]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[28]  Shashi Shekhar,et al.  A K-Main Routes Approach to Spatial Network Activity Summarization , 2010, IEEE Transactions on Knowledge and Data Engineering.

[29]  Jiong Yang,et al.  STING: A Statistical Information Grid Approach to Spatial Data Mining , 1997, VLDB.

[30]  Alexander Hinneburg,et al.  DENCLUE 2.0: Fast Clustering Based on Kernel Density Estimation , 2007, IDA.

[31]  Levent Ertoz,et al.  A New Shared Nearest Neighbor Clustering Algorithm and its Applications , 2002 .

[32]  Sándor P. Fekete,et al.  On Simple Polygonalizations with Optimal Area , 2000, Discret. Comput. Geom..

[33]  J. van Leeuwen,et al.  Discrete and Computational Geometry , 2002, Lecture Notes in Computer Science.

[34]  Vasyl Tereshchenko,et al.  Generating a Simple Polygonalizations , 2011, 2011 15th International Conference on Information Visualisation.

[35]  María Teresa Taranilla,et al.  Approaching minimum area polygonization , 2011 .