Heterogeneous Activation, Local Structure, and Softness in Supercooled Colloidal Liquids.

We experimentally characterize heterogeneous nonexponential relaxation in bidisperse supercooled colloidal liquids utilizing a recent concept called "softness" [Phys. Rev. Lett. 114, 108001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.108001]. Particle trajectory and structure data enable classification of particles into subgroups with different local environments and propensities to hop. We determine residence times t_{R} between particle hops and show that t_{R} derived from particles in the same softness subgroup are exponentially distributed. Using the mean residence time t[over ¯]_{R} for each softness subgroup, and a Kramers' reaction rate model, we estimate the activation energy barriers E_{b} for particle hops, and show that both t[over ¯]_{R} and E_{b} are monotonic functions of softness. Finally, we derive information about the combinations of large and small particle neighbors that determine particle softness, and we explicitly show that multiple exponential relaxation channels in the supercooled liquid give rise to its nonexponential behavior.

[1]  M D Ediger,et al.  Spatially heterogeneous dynamics in supercooled liquids. , 2003, Annual review of physical chemistry.

[2]  Andrea J Liu,et al.  Disconnecting structure and dynamics in glassy thin films , 2016, Proceedings of the National Academy of Sciences.

[3]  E. Weeks,et al.  Energy barriers, entropy barriers, and non-Arrhenius behavior in a minimal glassy model. , 2015, Physical review. E.

[4]  Stephen R. Williams,et al.  The role of local structure in dynamical arrest , 2014, 1405.5691.

[5]  Gavin C. Cawley,et al.  On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation , 2010, J. Mach. Learn. Res..

[6]  David R. Reichman,et al.  Irreversible reorganization in a supercooled liquid originates from localized soft modes , 2008 .

[7]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[8]  S. Arrhenius Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren , 1889 .

[9]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[10]  David R. Reichman,et al.  Soft colloids make strong glasses , 2009, Nature.

[11]  A. Coniglio,et al.  Dynamic phase coexistence in glass–forming liquids , 2014, Scientific Reports.

[12]  Jeppe C. Dyre,et al.  Colloquium : The glass transition and elastic models of glass-forming liquids , 2006 .

[13]  K. Schmidt-Rohr,et al.  Nature of nonexponential loss of correlation above the glass transition investigated by multidimensional NMR. , 1991, Physical review letters.

[14]  R. Ganapathy,et al.  Deconstructing the glass transition through critical experiments on colloids , 2016, 1608.08924.

[15]  D. Bonn,et al.  Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass. , 2011, Physical review letters.

[16]  Andrea J. Liu,et al.  Relationship between local structure and relaxation in out-of-equilibrium glassy systems , 2016, Proceedings of the National Academy of Sciences.

[17]  P. Lai,et al.  Colloidal diffusion over a quenched two-dimensional random potential. , 2017, Soft matter.

[18]  A. J. Liu,et al.  Vibrational modes identify soft spots in a sheared disordered packing. , 2010, Physical review letters.

[19]  Andrea Cavagna,et al.  Supercooled liquids for pedestrians , 2009, 0903.4264.

[20]  Jennifer M. Rieser,et al.  Identifying structural flow defects in disordered solids using machine-learning methods. , 2014, Physical review letters.

[21]  A. Yodh,et al.  Synthesis of micrometer-size poly(N-isopropylacrylamide) microgel particles with homogeneous crosslinker density and diameter control. , 2013, Journal of colloid and interface science.

[22]  Kenneth S. Schweizer,et al.  Entropic barriers, activated hopping, and the glass transition in colloidal suspensions , 2003 .

[23]  Andrew J. Dunleavy,et al.  Information-theoretic measurements of coupling between structure and dynamics in glass formers. , 2014, Physical review letters.

[24]  Ludovic Berthier,et al.  Structure and dynamics of glass formers: predictability at large length scales. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Jonathan K. Kummerfeld,et al.  Spatiotemporal hierarchy of relaxation events, dynamical heterogeneities, and structural reorganization in a supercooled liquid. , 2010, Physical review letters.

[26]  Stephen R. Williams,et al.  Direct observation of a local structural mechanism for dynamic arrest. , 2008, Nature materials.

[27]  F. Stillinger,et al.  A Topographic View of Supercooled Liquids and Glass Formation , 1995, Science.

[28]  K. Schweizer,et al.  Activated hopping and dynamical fluctuation effects in hard sphere suspensions and fluids. , 2006, The Journal of chemical physics.

[29]  Andrea J. Liu,et al.  A structural approach to relaxation in glassy liquids , 2015, Nature Physics.

[30]  E. Weeks,et al.  Glass transition of two-dimensional binary soft-disk mixtures with large size ratios. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Giuseppe Pesce,et al.  Cage Size and Jump Precursors in Glass-Forming Liquids: Experiment and Simulations. , 2017, The journal of physical chemistry letters.

[32]  Marcus T. Cicerone,et al.  Relaxation of spatially heterogeneous dynamic domains in supercooled ortho‐terphenyl , 1995 .

[33]  Andreas Heuer,et al.  Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  W. Ostwald Notiz über das elektrische Leitungsvermögen der Säuren , 1884 .

[35]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[36]  Andrea J. Liu,et al.  Structural Properties of Defects in Glassy Liquids. , 2016, The journal of physical chemistry. B.

[37]  Svante Arrhenius,et al.  Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren , 1889 .

[38]  W. Gotze,et al.  Relaxation processes in supercooled liquids , 1992 .

[39]  A. Coniglio,et al.  Cage-jump motion reveals universal dynamics and non-universal structural features in glass forming liquids , 2016, 1604.03043.

[40]  P. Lai,et al.  Colloidal diffusion over a periodic energy landscape , 2013 .

[41]  A. Sasso,et al.  Connecting short and long time dynamics in hard-sphere-like colloidal glasses. , 2014, Soft matter.

[42]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[43]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[44]  Jennifer M. Rieser,et al.  Structure-property relationships from universal signatures of plasticity in disordered solids , 2017, Science.

[45]  G. Biroli,et al.  Theoretical perspective on the glass transition and amorphous materials , 2010, 1011.2578.

[46]  Andrea J. Liu,et al.  Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses. , 2011, Physical review letters.

[47]  Jörg Rottler,et al.  Distribution of local relaxation events in an aging three-dimensional glass: spatiotemporal correlation and dynamical heterogeneity. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  A L Greer Metallic glasses. , 1995, Science.