Retinal ganglion cell shrinkage in glaucoma.

SUMMARY There has been some debate concerning the selective loss of retinal ganglion cells belonging to the magnocellular pathway in early glaucoma. Although histologic studies of retinal ganglion cells in experimental and human glaucoma have suggested selective loss of the larger cells and, by implication, selective damage to the magnocellular pathway, this has not been confirmed using psychophysical tests. Recent studies of retinal ganglion cell morphology in experimental glaucoma provide evidence that retinal ganglion cells undergo morphologic changes prior to cell death; cell volume is reduced in surviving cells with corresponding reductions in the size of the axon and dendritic tree. The magnitude of these changes is consistent with cell shrinkage as an explanation for the apparent selective damaged reported in earlier studies. It is also likely that widespread changes in the retinal ganglion cell population precede cell death, which will affect the physiologic behavior of these cells.

[1]  Vaegan,et al.  Swelling and loss of photoreceptors in chronic human and experimental glaucomas. , 2000, Archives of ophthalmology.

[2]  E. Hedley‐Whyte,et al.  Lateral geniculate nucleus in glaucoma. , 1993, American journal of ophthalmology.

[3]  S. Sherman,et al.  Neurotransmitters contained in the subcortical extraretinal inputs to the monkey lateral geniculate nucleus , 2000, The Journal of comparative neurology.

[4]  H A Quigley,et al.  Retinal ganglion cell loss is size dependent in experimental glaucoma. , 1991, Investigative ophthalmology & visual science.

[5]  Y. Fukuda,et al.  Number and dendritic morphology of retinal ganglion cells that survived after axotomy in adult cats. , 1995, Journal of neurobiology.

[6]  C. Johnson,et al.  Longitudinal comparison of temporal-modulation perimetry with white-on-white and blue-on-yellow perimetry in ocular hypertension and early glaucoma. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  J. Jonas,et al.  Optic nerve fiber count and diameter of the retrobulbar optic nerve in normal and glaucomatous eyes , 1995, Graefe's Archive for Clinical and Experimental Ophthalmology.

[8]  Contrast sensitivity for flickering and static letters and visual acuity at isoluminance in glaucoma. , 1996, Journal of glaucoma.

[9]  S. Drance,et al.  Light-sense, flicker and resolution perimetry in glaucoma: a comparative study , 2004, Graefe's Archive for Clinical and Experimental Ophthalmology.

[10]  J. Morrison,et al.  Differential vulnerability of neurochemically identified subpopulations of retinal neurons in a monkey model of glaucoma , 1995, Brain Research.

[11]  V. Perry,et al.  Factors affecting the survival of cat retinal ganglion cells after optic nerve injury , 1996, Journal of neurocytology.

[12]  D. Dacey,et al.  Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[13]  W. Merigan,et al.  Selective damage to large cells in the cat retinogeniculate pathway by 2,5-hexanedione , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Shrinkage of cells in undeprived laminae of the monkey lateral geniculate nucleus following late closure of one eye , 1981, Brain Research.

[15]  P. Kaufman,et al.  Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. , 2000, Archives of ophthalmology.

[16]  S. Thanos Alterations in the morphology of ganglion cell dendrites in the adult rat retina after optic nerve transection and grafting of peripheral nerve segments , 2004, Cell and Tissue Research.

[17]  P. Kaufman,et al.  Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. , 2000, Investigative ophthalmology & visual science.

[18]  J. Morrison,et al.  Magnocellular and parvocellular visual pathways are both affected in a macaque monkey model of glaucoma. , 1997, Australian and New Zealand journal of ophthalmology.

[19]  W. Jones,et al.  Changes in the dendritic organization of neurons in the cerebral cortex following deafferentation. , 1962, Journal of anatomy.

[20]  H A Quigley,et al.  Foveal ganglion cell loss is size dependent in experimental glaucoma. , 1993, Investigative ophthalmology & visual science.

[21]  Jones Wh,et al.  Changes in the dendritic organization of neurons in the cerebral cortex following deafferentation. , 1962 .

[22]  H. Quigley,et al.  Neuronal death in glaucoma , 1999, Progress in Retinal and Eye Research.

[23]  C. R. Michael,et al.  Retinal afferent arborization patterns, dendritic field orientations, and the segregation of function in the lateral geniculate nucleus of the monkey. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Morgan Selective cell death in glaucoma: does it really occur? , 1994, The British journal of ophthalmology.

[25]  J. Kellerth,et al.  Changes in size and dendritic arborization patterns of adult cat spinal α‐Motoneurons following permanent axotomy , 1992, The Journal of comparative neurology.

[26]  L Dandona,et al.  Selective effects of experimental glaucoma on axonal transport by retinal ganglion cells to the dorsal lateral geniculate nucleus. , 1991, Investigative ophthalmology & visual science.

[27]  D. Zack,et al.  Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. , 1995, Investigative ophthalmology & visual science.

[28]  O. Grüsser,et al.  Effect of short-term intraocular pressure increase on cat retinal ganglion cell activity , 1984, Behavioural Brain Research.

[29]  C. Johnson,et al.  Screening for glaucomatous visual field loss with frequency-doubling perimetry. , 1997, Investigative ophthalmology & visual science.

[30]  A. Borst The theoretical foundation of dendritic function edited by I. Segev, J. Rinzel and G.M. Shepherd, The MIT Press, 1995. $55.00 (vii + 465 pages) ISBN 0 262 19356 6 , 1995, Trends in Neurosciences.

[31]  B. Chauhan,et al.  Diffuse loss of sensitivity in early glaucoma. , 1999, Investigative ophthalmology & visual science.

[32]  R. Miller,et al.  Studies of the optic nerve of the rhesus monkey: nerve fiber spectrum and physiological properties. , 1966, Vision research.

[33]  G. Dunkelberger,et al.  Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. , 1989, American journal of ophthalmology.

[34]  R. Weinreb,et al.  Comparison of high-pass resolution perimetry and standard automated perimetry in glaucoma. , 1995, American journal of ophthalmology.

[35]  G. Trick,et al.  Motion perception deficits in glaucomatous optic neuropathy , 1995, Vision Research.

[36]  A. Cowey Atrophy of Retinal Ganglion Cells after Removal of Striate Cortex in a Rhesus Monkey , 1974, Perception.

[37]  W R Green,et al.  Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. , 1988, Ophthalmology.

[38]  Y. Fukuda,et al.  Bilateral changes in soma size of geniculate relay cells and corticogeniculate cells after neonatal monocular enucleation in rats , 1984, Brain Research.

[39]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[40]  M. Frotscher,et al.  Fine structure of rat septohippocampal neurons: II. A time course analysis following axotomy , 1992, The Journal of comparative neurology.

[41]  H. Quigley,et al.  Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. , 2000, Investigative ophthalmology & visual science.

[42]  T. Thompson,et al.  Atrophy and Degeneration of Ganglion Cells in Central Retina Following Loss of Postsynaptic Target Neurons in the Dorsal Lateral Geniculate Nucleus of the Adult Cat , 1993, Experimental Neurology.

[43]  Hideya Uchida,et al.  Retinal ganglion cell death in experimental glaucoma , 2000, The British journal of ophthalmology.

[44]  Earl L. Smith,et al.  Retinal inputs to the monkey's lateral geniculate nucleus in experimental glaucoma , 1993 .

[45]  T. Powell,et al.  Cellular changes in the lateral geniculate nucleus of the cat and monkey after section of the optic tract. , 1976, Journal of anatomy.

[46]  F. M. D. Monasterio Properties of concentrically organized X and Y ganglion cells of macaque retina. , 1978 .

[47]  F. de Monasterio,et al.  Properties of concentrically organized X and Y ganglion cells of macaque retina. , 1978, Journal of neurophysiology.

[48]  P. Kaufman,et al.  Morphology of single ganglion cells in the glaucomatous primate retina. , 1998, Investigative ophthalmology & visual science.

[49]  G. Dunkelberger,et al.  Chronic glaucoma selectively damages large optic nerve fibers. , 1987, Investigative ophthalmology & visual science.

[50]  R S Harwerth,et al.  Glaucoma in primates: cytochrome oxidase reactivity in parvo- and magnocellular pathways. , 2000, Investigative ophthalmology & visual science.

[51]  M. Cole RETROGRADE ATROPHY OF AXONS OF THE MEDIAL LEMNISCUS OF THE CAT: An Experimental Study , 1970, Journal of Neuropathology and Experimental Neurology.

[52]  G. Schneider,et al.  Retrograde cortical and axonal changes following lesions of the pyramidal tract , 1975, Brain Research.

[53]  D. Zack,et al.  TUNEL-positive ganglion cells in human primary open-angle glaucoma. , 1997, Archives of ophthalmology.

[54]  H. Quigley Identification of glaucoma-related visual field abnormality with the screening protocol of frequency doubling technology. , 1998, American journal of ophthalmology.

[55]  V. Perry,et al.  The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina , 1991, Neuroscience.

[56]  H. Yawo Changes in the dendritic geometry of mouse superior cervical ganglion cells following postganglionic axotomy , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.