Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol–gel methods

Titania samples prepared by different non-hydrolytic sol–gel methods, mainly based on the etherolysis and alcoholysis of titanium tetrachloride, have been found to differ in both structure and texture. Thus, the reaction of diethyl ether with TiCl4 at 110 °C affords anatase, which begins to convert into rutile only around 1000 °C. The reaction of TiCl4 with ethanol leads to rutile as early as 110 °C, whereas the reaction of tert-butyl alcohol at 110 °C leads to the singular formation of brookite.

[1]  P. Mutin,et al.  Materials chemistry communications. Preparation of monolithic metal oxide gels by a non-hydrolytic sol–gel process , 1992 .

[2]  M. Mayo,et al.  Controlling Crystallinity during Processing of Nanocrystalline Titania , 1994 .

[3]  F. Babonneau,et al.  Chemical modification of alkoxide precursors , 1988 .

[4]  R. C. Mehrotra The Reaction of the Alkoxides of Titanium, Zirconium and Hafnium with Esters , 1954 .

[5]  R. C. Mehrotra,et al.  Titanium salts of mono-carboxylic acids. II. Reaction of Titanium Isopropoxide and ethoxide with acetic anhydride , 1957 .

[6]  H. Myers,et al.  Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer , 1957 .

[7]  R. Walton,et al.  Solvothermal synthesis and structural characterisation of the first ammonium cobalt gallium phosphate hydrate, NH4[CoGa2P3O12(H2O)2] , 1996 .

[8]  Andrew Mills,et al.  WATER-PURIFICATION BY SEMICONDUCTOR PHOTOCATALYSIS , 1993 .

[9]  M. Jansen,et al.  Oxide gels and ceramics prepared by a nonhydrolytic sol-gel process , 1995 .

[10]  J. Fabre,et al.  New Inorganic Ultrafiltration Membranes: Titania and Zirconia Membranes , 1989 .

[11]  Y. Miyamoto,et al.  Synthesis of Perovskite‐Type (La1−xSrx)MnO3 (O X 0.3) at Low Temperature , 1992 .

[12]  F. Babonneau,et al.  Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR = OPr-iso, OEt) modified by acetylacetone. 2. From the modified precursor to the colloids , 1989 .

[13]  B. E. Yoldas Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters , 1986 .

[14]  W. Wardlaw,et al.  146. Some esters of titanium , 1936 .

[15]  C. Serna,et al.  Low-temperature nucleation of rutile observed by Raman spectroscopy during crystallization of TiO2 , 1992 .

[16]  C. Dijkgraaf,et al.  Electronic transitions in TiCl4, TiCl3OR, TiCl2 (OR)2, TiCl (OR)3 and Ti(OR)4 (R = iC3H7) , 1968 .

[17]  R. McBETH,et al.  Molecular Addition Compounds of Titanium Tetrachloride with Several Ethers1 , 1953 .

[18]  E. F. Heald,et al.  Kinetics and mechanism of the anatase/rutile transformation, as catalyzed by ferric oxide and reducing conditions , 1972 .

[19]  C. Sanchez,et al.  Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid , 1987 .

[20]  Clément Sanchez,et al.  Sol-gel chemistry of transition metal oxides , 1988 .

[21]  D. C. Bradley,et al.  524. Titanium chloride alkoxides , 1952 .

[22]  G. Busca,et al.  Thermal stability of vanadia–titania catalysts , 1993 .

[23]  K. Terabe,et al.  Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide , 1994, Journal of Materials Science.

[24]  I. Keesmann Zur hydrothermalen Synthese von Brookit , 1966 .

[25]  A. Burggraaf,et al.  Synthesis and characterization of primary alumina, titania and binary membranes , 1992 .

[26]  Dominique Leclercq,et al.  Preparation of monolithic gels from silicon halides by a non-hydrolytic sol-gel process , 1992 .