Entanglement entropies in conformal systems with boundaries

We study the entanglement entropies in one-dimensional open critical systems, whose effective description is given by a conformal field theory with boundaries. We show that for pure-state systems formed by the ground state or by the excited states associated to primary fields, the entanglement entropies have a finite-size behavior that depends on the correlation of the underlying field theory. The analytical results are checked numerically, finding excellent agreement for the quantum chains ruled by the theories with central charge $c=1/2$ and $c=1$.