Dynamic models

This chapter covers dynamic models, an important kind of multi-level model. It shows how to simulate dynamic models, discusses process and observation error, and illustrates methods for fitting models that assume only one or the other. For problems where we want to estimate process error when the magnitude of observation error is known, it introduces the SIMEX approach. Finally, it presents a brief introduction to fitting state-space models, which can estimate both process and observation error, via the Kalman filter or Markov chain Monte Carlo.

[1]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[2]  J. R. Cook,et al.  Simulation-Extrapolation Estimation in Parametric Measurement Error Models , 1994 .

[3]  Jon T. Schnute,et al.  A General Framework for Developing Sequential Fisheries Models , 1994 .

[4]  J. R. Cook,et al.  Simulation-Extrapolation: The Measurement Error Jackknife , 1995 .

[5]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[6]  R. Hilborn,et al.  The Ecological Detective: Confronting Models with Data , 1997 .

[7]  J. Roughgarden,et al.  Primer of ecological theory , 1997 .

[8]  G. Gibson Markov Chain Monte Carlo Methods for Fitting Spatiotemporal Stochastic Models in Plant Epidemiology , 1997 .

[9]  Gavin J. Gibson,et al.  Estimating parameters in stochastic compartmental models using Markov chain methods , 1998 .

[10]  A. R. Gallant,et al.  Noise and Nonlinearity in Measles Epidemics: Combining Mechanistic and Statistical Approaches to Population Modeling , 1998, The American Naturalist.

[11]  Andrew R. Solow,et al.  ON FITTING A POPULATION MODEL IN THE PRESENCE OF OBSERVATION ERROR , 1998 .

[12]  Anthony R. Ives,et al.  COMMUNITY INTERACTION WEBS AND ZOOPLANKTON RESPONSES TO PLANKTIVORY MANIPULATIONS , 1999 .

[13]  Bärbel Finkenstädt,et al.  Time series modelling of childhood diseases: a dynamical systems approach , 2000 .

[14]  Russell B. Millar,et al.  Bayesian state-space modeling of age-structured data: fitting a model is just the beginning , 2000 .

[15]  Simon N. Wood,et al.  PARTIALLY SPECIFIED ECOLOGICAL MODELS , 2001 .

[16]  R F Costantino,et al.  Lattice Effects Observed in Chaotic Dynamics of Experimental Populations , 2001, Science.

[17]  B T Grenfell,et al.  Noisy Clockwork: Time Series Analysis of Population Fluctuations in Animals , 2001, Science.

[18]  Steve Leach,et al.  Transmission potential of smallpox in contemporary populations , 2001, Nature.

[19]  H. Caswell Matrix population models : construction, analysis, and interpretation , 2001 .

[20]  S. Ellner,et al.  Fitting population dynamic models to time-series data by gradient matching , 2002 .

[21]  Alan Hastings,et al.  FITTING POPULATION MODELS INCORPORATING PROCESS NOISE AND OBSERVATION ERROR , 2002 .

[22]  Ian D. Jonsen,et al.  META‐ANALYSIS OF ANIMAL MOVEMENT USING STATE‐SPACE MODELS , 2003 .

[23]  Perry de Valpine,et al.  BETTER INFERENCES FROM POPULATION-DYNAMICS EXPERIMENTS USING MONTE CARLO STATE-SPACE LIKELIHOOD METHODS , 2003 .

[24]  Peter Müller,et al.  INCORPORATING MULTIPLE SOURCES OF STOCHASTICITY INTO DYNAMIC POPULATION MODELS , 2003 .

[25]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[26]  S. Lindley,et al.  ESTIMATION OF POPULATION GROWTH AND EXTINCTION PARAMETERS FROM NOISY DATA , 2003 .

[27]  George Streftaris,et al.  Bayesian analysis of experimental epidemics of foot–and–mouth disease , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  Stephen T. Buckland,et al.  State-space models for the dynamics of wild animal populations , 2004 .

[29]  James S. Clark,et al.  POPULATION TIME SERIES: PROCESS VARIABILITY, OBSERVATION ERRORS, MISSING VALUES, LAGS, AND HIDDEN STATES , 2004 .

[30]  Stephen T. Buckland,et al.  A UNIFIED FRAMEWORK FOR MODELLING WILDLIFE POPULATION DYNAMICS † , 2005 .

[31]  Greg Dwyer,et al.  Combining Stochastic Models with Experiments to Understand the Dynamics of Monarch Butterfly Colonization , 2005, The American Naturalist.

[32]  H. Charles J. Godfray,et al.  Stable coexistence in insect communities due to density and trait-mediated indirect effects , 2005 .

[33]  C. D. Duck,et al.  Population dynamics of harbour seals Phoca vitulina in England: monitoring growth and catastrophic declines , 2005 .

[34]  Bruce E. Kendall,et al.  ANALYSIS OF SIZE TRAJECTORY DATA USING AN ENERGETIC-BASED GROWTH MODEL , 2005 .

[35]  M. Westoby,et al.  Bivariate line‐fitting methods for allometry , 2006, Biological reviews of the Cambridge Philosophical Society.

[36]  B. Finkenstädt,et al.  Statistical Inference in a Stochastic Epidemic SEIR Model with Control Intervention: Ebola as a Case Study , 2006, Biometrics.

[37]  Len Thomas,et al.  Incorporating movement into models of grey seal population dynamics. , 2006, The Journal of animal ecology.

[38]  Peter Chesson,et al.  The scale transition: scaling up population dynamics with field data. , 2006, Ecology.

[39]  E L Ionides,et al.  Inference for nonlinear dynamical systems , 2006, Proceedings of the National Academy of Sciences.

[40]  S. Ellner,et al.  Dynamic Models in Biology , 2006 .

[41]  Brian Dennis,et al.  Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. , 2007, Ecology letters.

[42]  T. Robinson,et al.  Models for Ecological Data: An Introduction , 2008 .