A QUBO Model for the Traveling Salesman Problem with Time Windows

This work focuses on expressing the TSP with Time Windows (TSPTW for short) as a quadratic unconstrained binary optimization (QUBO) problem. The time windows impose time constraints that a feasible solution must satisfy. These take the form of inequality constraints, which are known to be particularly difficult to articulate within the QUBO framework. This is, we believe, the first time this major obstacle is overcome and the TSPTW is cast in the QUBO formulation. We have every reason to anticipate that this development will lead to the actual execution of small scale TSPTW instances on the D-Wave platform.

[1]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[2]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[3]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[4]  S. Lloyd,et al.  Quantum gradient descent and Newton’s method for constrained polynomial optimization , 2016, New Journal of Physics.

[5]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[6]  Marco Lanzagorta,et al.  A cross-disciplinary introduction to quantum annealing-based algorithms , 2018, 1803.03372.

[7]  Benjamín Barán,et al.  A Quantum Adiabatic Algorithm for Multiobjective Combinatorial Optimization , 2019, Axioms.

[8]  Endre Boros,et al.  Local search heuristics for Quadratic Unconstrained Binary Optimization (QUBO) , 2007, J. Heuristics.

[9]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[10]  D. Venturelli,et al.  Quantum Annealing Implementation of Job-Shop Scheduling , 2015, 1506.08479.

[11]  Christian F. A. Negre,et al.  Graph Partitioning using Quantum Annealing on the D-Wave System , 2017, ArXiv.

[12]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[13]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[14]  Óscar Promio Muñoz Quantum Annealing in the transverse Ising Model , 2018 .

[15]  Aritra Sarkar Quantum Algorithms: for pattern-matching in genomic sequences , 2018 .

[16]  Fred W. Glover,et al.  A Tutorial on Formulating QUBO Models , 2018, ArXiv.

[17]  E. Tosatti,et al.  Quantum annealing of the traveling-salesman problem. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Barrett W. Thomas,et al.  A Compressed-Annealing Heuristic for the Traveling Salesman Problem with Time Windows , 2007, INFORMS J. Comput..

[19]  Michel Gendreau,et al.  A Generalized Insertion Heuristic for the Traveling Salesman Problem with Time Windows , 1998, Oper. Res..

[20]  Nikesh S. Dattani,et al.  Pegasus: The second connectivity graph for large-scale quantum annealing hardware , 2019, ArXiv.

[21]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[22]  Aidan Roy,et al.  Next-Generation Topology of D-Wave Quantum Processors , 2020, 2003.00133.

[23]  Fred W. Glover,et al.  Quadratic unconstrained binary optimization problem preprocessing: Theory and empirical analysis , 2017, Networks.

[24]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[25]  Michael J. Dinneen,et al.  Solving the Hamiltonian Cycle Problem using a Quantum Computer , 2019, ACSW.

[26]  A. Young,et al.  Spin glasses and random fields , 1997 .

[27]  Alan Crispin,et al.  Quantum annealing of the graph coloring problem , 2011, Discret. Optim..

[28]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[29]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.

[30]  Zhang Xing-hua Hybrid Quantum Genetic Algorithm and Its Application in VRP , 2010 .

[31]  Shinichirou Taguchi,et al.  Quantum Annealing of Vehicle Routing Problem with Time, State and Capacity , 2019, QTOP@NetSys.

[32]  Daniel A. Lidar,et al.  Adiabatic quantum algorithm for search engine ranking. , 2011, Physical review letters.

[33]  Panos M. Pardalos,et al.  Computational aspects of a branch and bound algorithm for quadratic zero-one programming , 1990, Computing.

[34]  Alán Aspuru-Guzik,et al.  Adiabatic Quantum Simulation of Quantum Chemistry , 2013, Scientific Reports.

[35]  G. F. Newell,et al.  On the Theory of the Ising Model of Ferromagnetism , 1953 .

[36]  Richard H. Warren,et al.  Adapting the traveling salesman problem to an adiabatic quantum computer , 2012, Quantum Information Processing.

[37]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[38]  Erio Tosatti,et al.  Optimization by quantum annealing: lessons from hard satisfiability problems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Theodore Andronikos,et al.  Combinatorial GVNS (General Variable Neighborhood Search) Optimization for Dynamic Garbage Collection , 2018, Algorithms.

[40]  Scott Pakin,et al.  Performing fully parallel constraint logic programming on a quantum annealer , 2018, Theory and Practice of Logic Programming.

[41]  Rupak Biswas,et al.  Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models , 2016, 1609.02542.

[42]  Wilson Rosa de Oliveira,et al.  QUBO formulation for the contact map overlap problem , 2018, International Journal of Quantum Information.

[43]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[44]  T. Kadowaki Study of Optimization Problems by Quantum Annealing , 2002, quant-ph/0205020.

[45]  Florian Neukart,et al.  A Hybrid Solution Method for the Capacitated Vehicle Routing Problem Using a Quantum Annealer , 2018, Front. ICT.

[46]  André Langevin,et al.  A two-commodity flow formulation for the traveling salesman and the makespan problems with time windows , 1990, Networks.

[47]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[48]  Theodore Andronikos,et al.  Initialization methods for the TSP with Time Windows using Variable Neighborhood Search , 2015, 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA).

[49]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[50]  Eldad Haber,et al.  Building an iterative heuristic solver for a quantum annealer , 2015, Computational Optimization and Applications.

[51]  G. D. Sotiropoulos,et al.  A new hybrid genetic algorithm for global optimization , 1997 .

[52]  Nikesh S. Dattani,et al.  Embedding quadratization gadgets on Chimera and Pegasus graphs , 2019, ArXiv.

[53]  Rafael Lahoz-Beltra,et al.  Quantum Genetic Algorithms for Computer Scientists , 2016, Comput..

[54]  R. Feynman Simulating physics with computers , 1999 .

[55]  Christos Papalitsas,et al.  A Quantum Inspired GVNS: Some Preliminary Results. , 2017, Advances in experimental medicine and biology.

[56]  Jacques Desrosiers,et al.  An Optimal Algorithm for the Traveling Salesman Problem with Time Windows , 1991, Oper. Res..

[57]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[58]  Tarek M. Taha,et al.  Quadratic Unconstrained Binary Optimization (QUBO) on neuromorphic computing system , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[59]  Alan Crispin,et al.  Quantum Annealing Algorithm for Vehicle Scheduling , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[60]  David Von Dollen,et al.  Traffic Flow Optimization Using a Quantum Annealer , 2017, Front. ICT.

[61]  Fred W. Glover,et al.  The unconstrained binary quadratic programming problem: a survey , 2014, Journal of Combinatorial Optimization.

[62]  Scott Pakin,et al.  Embedding Inequality Constraints for Quantum Annealing Optimization , 2019, QTOP@NetSys.

[63]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[64]  Richard H. Warren,et al.  Small Traveling Salesman Problems , 2017 .

[65]  Hartmut Neven,et al.  Training a Large Scale Classifier with the Quantum Adiabatic Algorithm , 2009, ArXiv.

[66]  Sebastián Urrutia,et al.  A General VNS heuristic for the traveling salesman problem with time windows , 2010, Discret. Optim..

[67]  Theodore Andronikos,et al.  Unconventional GVNS for Solving the Garbage Collection Problem with Time Windows , 2019 .

[68]  Hristo Djidjev,et al.  Embedding Equality Constraints of Optimization Problems into a Quantum Annealer , 2019, Algorithms.

[69]  Daniel A. Lidar,et al.  Consistency of the Adiabatic Theorem , 2004, Quantum Inf. Process..

[70]  Marco Lanzagorta,et al.  A QUBO Formulation of the Stereo Matching Problem for D-Wave Quantum Annealers , 2018, Entropy.

[71]  Helmut G. Katzgraber,et al.  Perspectives of quantum annealing: methods and implementations , 2019, Reports on progress in physics. Physical Society.

[72]  Y. Crama,et al.  Upper-bounds for quadratic 0-1 maximization , 1990 .

[73]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.