An overview of incremental feature extraction methods based on linear subspaces

[1]  J. Bunch,et al.  Updating the singular value decomposition , 1978 .

[2]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[3]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[4]  B. V. K. Vijaya Kumar,et al.  Efficient Calculation of Primary Images from a Set of Images , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  B. S. Manjunath,et al.  An Eigenspace Update Algorithm for Image Analysis , 1997, CVGIP Graph. Model. Image Process..

[7]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[8]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[9]  Guan-Yu Chen,et al.  An incremental-learning-by-navigation approach to vision-based autonomous land vehicle guidance in indoor environments using vertical line information and multiweighted generalized Hough transform technique , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[10]  Ralph R. Martin,et al.  Incremental Eigenanalysis for Classification , 1998, BMVC.

[11]  Hongyuan Zha,et al.  On Updating Problems in Latent Semantic Indexing , 1997, SIAM J. Sci. Comput..

[12]  Azriel Rosenfeld,et al.  Image Analysis and Computer Vision: 1998 , 1999, Comput. Vis. Image Underst..

[13]  Ralph R. Martin,et al.  Merging and Splitting Eigenspace Models , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Michael Lindenbaum,et al.  Sequential Karhunen-Loeve basis extraction and its application to images , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[15]  Ja-Chen Lin,et al.  A new LDA-based face recognition system which can solve the small sample size problem , 1998, Pattern Recognit..

[16]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[17]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[18]  Ralph R. Martin,et al.  Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition , 2002, Image and Vision Computing.

[19]  Jian Yang,et al.  Why can LDA be performed in PCA transformed space? , 2003, Pattern Recognit..

[20]  Juyang Weng,et al.  Candid Covariance-Free Incremental Principal Component Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Danijel Skocaj,et al.  Weighted and robust incremental method for subspace learning , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[22]  Haitao Zhao,et al.  Incremental eigen decomposition , 2003 .

[23]  Xiaoou Tang,et al.  Dual-space linear discriminant analysis for face recognition , 2004, CVPR 2004.

[24]  Jieping Ye,et al.  An optimization criterion for generalized discriminant analysis on undersampled problems , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Shaoning Pang,et al.  A Modified Incremental Principal Component Analysis for On-Line Learning of Feature Space and Classifier , 2004, PRICAI.

[26]  Jieping Ye,et al.  LDA/QR: an efficient and effective dimension reduction algorithm and its theoretical foundation , 2004, Pattern Recognit..

[27]  Yongmin Li,et al.  On incremental and robust subspace learning , 2004, Pattern Recognit..

[28]  Hui Xiong,et al.  IDR/QR: An Incremental Dimension Reduction Algorithm via QR Decomposition , 2005, IEEE Trans. Knowl. Data Eng..

[29]  Hakan Cevikalp,et al.  Discriminative common vectors for face recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Shuicheng Yan,et al.  Largest-eigenvalue-theory for incremental principal component analysis , 2005, IEEE International Conference on Image Processing 2005.

[31]  Shaoning Pang,et al.  Incremental linear discriminant analysis for classification of data streams , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[32]  Shaoning Pang,et al.  Chunk Incremental LDA Computing on Data Streams , 2005, ISNN.

[33]  Haitao Zhao,et al.  A novel incremental principal component analysis and its application for face recognition , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[34]  Jianlin Wang,et al.  Solving the small sample size problem in face recognition using generalized discriminant analysis , 2006, Pattern Recognit..

[35]  M. Brand,et al.  Fast low-rank modifications of the thin singular value decomposition , 2006 .

[36]  Aleix M. Martínez,et al.  Subclass discriminant analysis , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Horst Bischof,et al.  Incremental LDA Learning by Combining Reconstructive and Discriminative Approaches , 2007, BMVC.

[38]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[39]  Jieping Ye,et al.  Least squares linear discriminant analysis , 2007, ICML '07.

[40]  Josef Kittler,et al.  Incremental Linear Discriminant Analysis Using Sufficient Spanning Set Approximations , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Rüdiger Dillmann,et al.  Incremental Learning of Tasks From User Demonstrations, Past Experiences, and Vocal Comments , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[42]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.

[43]  Gene H. Golub,et al.  Methods for modifying matrix factorizations , 1972, Milestones in Matrix Computation.

[44]  Qiangfu Zhao,et al.  Rough common vector: A new approach to face recognition , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[45]  Pong C. Yuen,et al.  Incremental Linear Discriminant Analysis for Face Recognition , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[46]  David Zhang,et al.  A highly scalable incremental facial feature extraction method , 2008, Neurocomputing.

[47]  Shaoning Pang,et al.  Incremental Learning of Chunk Data for Online Pattern Classification Systems , 2008, IEEE Transactions on Neural Networks.

[48]  Philip S. Yu,et al.  Incremental tensor analysis: Theory and applications , 2008, TKDD.

[49]  Vincent Martin,et al.  A cognitive vision approach to early pest detection in greenhouse crops , 2008 .

[50]  Zhang Yi,et al.  A New Incremental PCA Algorithm With Application to Visual Learning and Recognition , 2009, Neural Processing Letters.

[51]  Domonkos Tikk,et al.  Scalable Collaborative Filtering Approaches for Large Recommender Systems , 2009, J. Mach. Learn. Res..

[52]  Xiaoou Tang,et al.  Fast Algorithm for Updating the Discriminant Vectors of Dual-Space LDA , 2009, IEEE Transactions on Information Forensics and Security.

[53]  Yasuo Kuniyoshi,et al.  AI Goggles: Real-time Description and Retrieval in the Real World with Online Learning , 2009, 2009 Canadian Conference on Computer and Robot Vision.

[54]  Zhi-Hua Zhou,et al.  Least Square Incremental Linear Discriminant Analysis , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[55]  Francesc J. Ferri,et al.  Efficient Dimensionality Reduction on Undersampled Problems through Incremental Discriminative Common Vectors , 2010, 2010 IEEE International Conference on Data Mining Workshops.

[56]  Josef Kittler,et al.  Incremental Linear Discriminant Analysis Using Sufficient Spanning Sets and Its Applications , 2010, International Journal of Computer Vision.

[57]  Francesc J. Ferri,et al.  Image Recognition through Incremental Discriminative Common Vectors , 2010, ACIVS.

[58]  Yen-Wei Chen,et al.  Batch-incremental principal component analysis with exact mean update , 2011, 2011 18th IEEE International Conference on Image Processing.

[59]  Minghai Yao,et al.  Adaptive subspace incremental PCA based online learning for object classification and recognition , 2011, 2011 4th International Congress on Image and Signal Processing.

[60]  Francesc J. Ferri,et al.  Null Space Based Image Recognition Using Incremental Eigendecomposition , 2011, IbPRIA.

[61]  Yong Wang,et al.  Incremental learning of complete linear discriminant analysis for face recognition , 2012, Knowl. Based Syst..

[62]  Richa Singh,et al.  Incremental subclass discriminant analysis: A case study in face recognition , 2012, 2012 19th IEEE International Conference on Image Processing.

[63]  Michael R. Lyu,et al.  Online learning for collaborative filtering , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[64]  Lars Schmidt-Thieme,et al.  Real-time top-n recommendation in social streams , 2012, RecSys.

[65]  Nathan Srebro,et al.  Stochastic optimization for PCA and PLS , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[66]  Soon Keat Tan,et al.  Localized, Adaptive Recursive Partial Least Squares Regression for Dynamic System Modeling , 2012 .

[67]  Qingsheng Zhu,et al.  Incremental Collaborative Filtering recommender based on Regularized Matrix Factorization , 2012, Knowl. Based Syst..

[68]  Yong Wang,et al.  Incremental learning of discriminant common vectors for feature extraction , 2012, Appl. Math. Comput..

[69]  Yong Wang,et al.  Incremental complete LDA for face recognition , 2012, Pattern Recognit..

[70]  Gang Chen,et al.  Chunk incremental IDR/QR LDA learning , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[71]  Francesc J. Ferri,et al.  Fast Approximated Discriminative Common Vectors Using Rank-One SVD Updates , 2013, ICONIP.

[72]  Yu-Chiang Frank Wang,et al.  A rank-one update method for least squares linear discriminant analysis with concept drift , 2013, Pattern Recognit..

[73]  Hailong Sun,et al.  An Incremental Tensor Factorization Approach for Web Service Recommendation , 2014, 2014 IEEE International Conference on Data Mining Workshop.

[74]  Michael Weyrich,et al.  An adaptive image processing system based on incremental learning for industrial applications , 2014, Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA).

[75]  Thierry Bouwmans,et al.  Incremental and Multi-feature Tensor Subspace Learning Applied for Background Modeling and Subtraction , 2014, ICIAR.

[76]  Zhongliang Jing,et al.  EVD Dualdating Based Online Subspace Learning , 2014 .

[77]  João Gama,et al.  Fast Incremental Matrix Factorization for Recommendation with Positive-Only Feedback , 2014, UMAP.

[78]  Michael K. Ng,et al.  Incremental Linear Discriminant Analysis: A Fast Algorithm and Comparisons , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[79]  Jiwen Lu,et al.  PCANet: A Simple Deep Learning Baseline for Image Classification? , 2014, IEEE Transactions on Image Processing.

[80]  Hanqing Lu,et al.  Incremental Matrix Factorization via Feature Space Re-learning for Recommender System , 2015, RecSys.

[81]  Nilanjan Dey,et al.  Principal component analysis in medical image processing: a study , 2015 .

[82]  Francesc J. Ferri,et al.  Incremental Generalized Discriminative Common Vectors for Image Classification , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[83]  Yong Wang,et al.  Incremental learning from chunk data for IDR/QR , 2015, Image Vis. Comput..

[84]  Emilio Marengo,et al.  Chemometric Multivariate Tools for Candidate Biomarker Identification: LDA, PLS-DA, SIMCA, Ranking-PCA. , 2016, Methods in molecular biology.

[85]  Kan Ren,et al.  Object tracking based on two-dimensional PCA , 2016 .

[86]  Richa Singh,et al.  On incremental semi-supervised discriminant analysis , 2016, Pattern Recognit..

[87]  Hashibah Hamid,et al.  Performance analysis: an integration of principal component analysis and linear discriminant analysis for a very large number of measured variables , 2016 .

[88]  Yang Gao,et al.  Incremental Nonnegative Matrix Factorization Based on Matrix Sketching and k-means Clustering , 2016, IDEAL.

[89]  Ming Li,et al.  Text-independent voice conversion using deep neural network based phonetic level features , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[90]  Michael K. Ng,et al.  Incremental Regularized Least Squares for Dimensionality Reduction of Large-Scale Data , 2016, SIAM J. Sci. Comput..

[91]  Lingfei Mo,et al.  Human daily activity recognition with wearable sensors based on incremental learning , 2016, 2016 10th International Conference on Sensing Technology (ICST).

[92]  Lan Sun,et al.  Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine , 2016, Applied spectroscopy.

[93]  Dong Wang,et al.  Online Object Tracking Based on Convex Hull Representation , 2016, 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS).

[94]  Jesus Martinez del Rincon,et al.  Incremental model learning for spectroscopy-based food analysis , 2017 .

[95]  Yijun Wang,et al.  Incremental Matrix Factorization: A Linear Feature Transformation Perspective , 2017, IJCAI.

[96]  Shen Furao,et al.  An online incremental orthogonal component analysis method for dimensionality reduction , 2017, Neural Networks.

[97]  Rm.Vidhya Vathi Principal component analysis (PCA) in medical image processing using digital imaging and communications in medicine (dicom) medical images , 2017 .

[98]  Jesús Martínez del Rincón,et al.  Decremental generalized discriminative common vectors applied to images classification , 2017, Knowl. Based Syst..

[99]  Evangelos E. Papalexakis,et al.  SamBaTen: Sampling-based Batch Incremental Tensor Decomposition , 2017, SDM.