On the Smoothness of Value Functions and the Existence of Optimal Strategies

In dynamic models driven by di usion processes, the smoothness of the value function plays a crucial role for characterizing properties of the solution. However, available methods to ensure such smoothness have limited applicability in economics, and economists have often relied on either model-speci c arguments or explicit solutions. In this paper, we prove that the value function for the optimal control of any time-homogeneous, one-dimensional di usion is twice continuously di erentiable, under Lipschitz, growth, and non-vanishing volatility conditions. Under similar conditions, the value function of any optimal stopping problem is continuously di erentiable. For the rst problem, we provide sucient conditions for the existence of an optimal control. The optimal control is Markovian and constructed from the Bellman equation. We also establish an envelope theorem for parameterized optimal stopping problems. Several applications are discussed, including growth, dynamic contracting, and experimentation models.

[1]  S. Karlin,et al.  The Theory of Decision Procedures for Distributions with Monotone Likelihood Ratio , 1956 .

[2]  Philip Hartman,et al.  On boundary value problems for systems of ordinary, nonlinear, second order differential equations , 1960 .

[3]  J. Baxley Nonlinear Two Point Boundary Value Problems , 1968 .

[4]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[5]  R. C. Merton,et al.  Optimum consumption and portfolio rules in a continuous - time model Journal of Economic Theory 3 , 1971 .

[6]  Shintaro Nakao,et al.  On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations , 1972 .

[7]  R. C. Merton,et al.  Optimum Consumption and Portfolio Rules in a Continuous-Time Model* , 1975 .

[8]  P. Moerbeke On optimal stopping and free boundary problems , 1973, Advances in Applied Probability.

[9]  Donald M. Topkis,et al.  Minimizing a Submodular Function on a Lattice , 1978, Oper. Res..

[10]  J. Scheinkman,et al.  On the Differentiability of the Value Function in Dynamic Models of Economics , 1979 .

[11]  E. Noussair On the existence of solutions of nonlinear elliptic boundary value problems , 1979 .

[12]  J. Gittins Bandit processes and dynamic allocation indices , 1979 .

[13]  Boyan Jovanovic Job Matching and the Theory of Turnover , 1979, Journal of Political Economy.

[14]  A. Veretennikov ON STRONG SOLUTIONS AND EXPLICIT FORMULAS FOR SOLUTIONS OF STOCHASTIC INTEGRAL EQUATIONS , 1981 .

[15]  Michael Josephy Composing functions of bounded variation , 1981 .

[16]  Martin T. Barlow,et al.  One Dimensional Stochastic Differential Equations with No Strong Solution , 1982 .

[17]  R. McDonald,et al.  The Value of Waiting to Invest , 1982 .

[18]  Lawrence C. Evans,et al.  Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators , 1983 .

[19]  J. Michael Harrison,et al.  Instantaneous Control of Brownian Motion , 1983, Math. Oper. Res..

[20]  P. Lions Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part I , 1983 .

[21]  W. Orlicz,et al.  COMPOSING FUNCTIONS OF BOUNDED ^-VARIATION , 2010 .

[22]  E. Lehmann Comparing Location Experiments , 1988 .

[23]  M. Safonov,et al.  ON THE CLASSICAL SOLUTION OF NONLINEAR ELLIPTIC EQUATIONS OF SECOND ORDER , 1989 .

[24]  Luigi Ambrosio,et al.  A general chain rule for distributional derivatives , 1990 .

[25]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[26]  Hans G. Kaper,et al.  Existence theorems for second order boundary value problems , 1991, Differential and Integral Equations.

[27]  B. Dumas Super contact and related optimality conditions , 1991 .

[28]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[29]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[30]  Avinash Dixit,et al.  Choosing among alternative discrete investment projects under uncertainty , 1993 .

[31]  Avinash Dixit,et al.  The art of smooth pasting , 1993 .

[32]  Paul R. Milgrom,et al.  Monotone Comparative Statics , 1994 .

[33]  H. Leland. Corporate Debt Value, Bond Covenants, and Optimal Capital Structure , 1994, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[34]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[35]  Lones Smith,et al.  The Optimal Level of Experimentation , 2000 .

[36]  Philip Hartman,et al.  Ordinary differential equations, Second Edition , 2002, Classics in applied mathematics.

[37]  A. Cherny On the Uniqueness in Law and the Pathwise Uniqueness for Stochastic Differential Equations , 2002 .

[38]  Paul R. Milgrom,et al.  Envelope Theorems for Arbitrary Choice Sets , 2002 .

[39]  M. Cripps,et al.  Strategic Experimentation with Exponential Bandits , 2003 .

[40]  Savas Dayanik,et al.  On the optimal stopping problem for one-dimensional diffusions , 2003 .

[41]  Shen Zu-he,et al.  Existence of solutions for nonlinear elliptic boundary value problems , 2003 .

[42]  V. V. Chistyakov,et al.  Selections of Bounded Variation , 2004 .

[43]  Yuliy Sannikov A Continuous-Time Version of the Principal-Agent , 2005 .

[44]  V. Borkar Controlled diffusion processes , 2005, math/0511077.

[45]  P. DeMarzo,et al.  Optimal Security Design and Dynamic Capital Structure in a Continuous‐Time Agency Model , 2006 .

[46]  Thomas Mariotti,et al.  Irreversible investment in alternative projects , 2006 .

[47]  A. Davie Uniqueness of solutions of stochastic differential equations , 2007, 0709.4147.

[48]  Bruno Strulovici,et al.  Comparative Statics, Informativeness, and the Interval Dominance Order , 2009 .

[49]  Stéphane Villeneuve,et al.  On Threshold Strategies and the Smooth-Fit Principle for Optimal Stopping Problems , 2007, Journal of Applied Probability.

[50]  Zhiguo He,et al.  Dynamic Agency and the Q Theory of Investment , 2012 .

[51]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[52]  S. Zagatti On viscosity solutions of Hamilton-Jacobi equations , 2008 .

[53]  Huyen Pham,et al.  Continuous-time stochastic control and optimization with financial applications / Huyen Pham , 2009 .

[54]  Manuel S. Santos,et al.  Differentiability of the value function without interiority assumptions , 2009, J. Econ. Theory.

[55]  Manuel S. Santos,et al.  Differentiability of the value function in continuous-time economic models , 2012 .

[56]  Bruno Strulovici,et al.  Aggregating the single crossing property , 2012 .

[57]  Patrick Habets,et al.  Two-Point Boundary Value Problems: Lower and Upper Solutions , 2012 .

[58]  Bruno Strulovici,et al.  Discounting, Values, and Decisions , 2013, Journal of Political Economy.

[59]  B. Øksendal,et al.  Applied Stochastic Control of Jump Diffusions , 2004, Universitext.