Motivations for using ferroelectric liquid crystal spatial light modulators in neurocomputing.

Spatial light modulators can be used in neurocomputing as input and output display devices and storage media for the synaptic weights. We discuss the operating characteristics of a new class of spatial light modulator that utilize ferroelectric liquid crystals and their application to building optical neural network architectures.

[1]  T Minemoto,et al.  Optical parallel logic gate using spatial light modulators with the Pockels effect: implementation using three PROM devices. , 1986, Applied optics.

[2]  Nobuo Nishida,et al.  A New Associative Memory System Utilizing Holography , 1970, IEEE Transactions on Computers.

[3]  N. Clark,et al.  Submicrosecond bistable electro‐optic switching in liquid crystals , 1980 .

[4]  B H Soffer,et al.  Associative holographic memory with feedback using phase-conjugate mirrors. , 1986, Optics letters.

[5]  Marvin B. Klein,et al.  Optimal Properties Of Photorefractive Materials For Optical Data Processing , 1983 .

[6]  Yoshiji Suzuki,et al.  Microchannel Spatial Light Modulator With Improved Resolution And Contrast Ratio , 1986, Photonics West - Lasers and Applications in Science and Engineering.

[7]  Y. Owechko,et al.  Programmable multilayer optical neural networks with asymmetric interconnection weights , 1988, IEEE 1988 International Conference on Neural Networks.

[8]  M. Handschy,et al.  Electrooptic response during switching of a ferroelectric liquid crystal cell with uniform director orientation , 1987 .

[9]  Lin Zhang,et al.  Optical connectionist machine with polarization-based bipolar weight values , 1989 .

[10]  Shoichi Kurita,et al.  High‐speed light valve using an amorphous silicon photosensor and ferroelectric liquid crystals , 1987 .

[11]  D. R. Pape,et al.  Characteristics Of The Deformable Mirror Device For Optical Information Processing , 1983 .

[12]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[13]  D. Psaltis,et al.  Invariance and discrimination properties of the optical associative loop , 1988, IEEE 1988 International Conference on Neural Networks.

[14]  W. J. Burke,et al.  Crosstalk noise from multiple thick‐phase holograms , 1977 .

[15]  K. Johnson,et al.  Optical Computing And Image Processing With Ferroelectric Liquid Crystals , 1987 .

[16]  David A. B. Miller,et al.  Integrated quantum well self-electro-optic effect device: 2 × 2 array of optically bistable switches , 1986 .

[17]  C. S. Sexton,et al.  Current Status of Hughes Liquid Crystal Light Valve Performance for Optical Data Processing , 1986, Optics & Photonics.

[18]  Richard Fozzard,et al.  A Connectionist Expert System that Actually Works , 1988, NIPS.

[19]  A Dynamic Picture of a Ferroelectric Liquid Crystal Screen in Multiplex Drive , 1987 .

[20]  Mark A. Handschy,et al.  High-speed binary optically addressed spatial light modulator , 1989 .

[21]  D. Z. Anderson,et al.  Coherent optical eigenstate memory. , 1986, Optics letters.

[22]  D. Brady,et al.  Adaptive optical networks using photorefractive crystals. , 1988, Applied optics.

[23]  J N Lee,et al.  Optical implementations of associative networks with versatile adaptive learning capabilities. , 1987, Applied optics.

[24]  M. Handschy,et al.  Ferroelectric Liquid Crystal Electro-Optics Using the Surface Stabilized Structure , 1983 .

[25]  Uzi Efron,et al.  The silicon liquid‐crystal light valve , 1985 .

[26]  D Z Anderson,et al.  Dynamic optical interconnects: volume holograms as optical two-port operators. , 1987, Applied optics.

[27]  J W Goodman,et al.  Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. , 1978, Optics letters.

[28]  Armand R. Tanguay Materials requirements for optical processing and computing devices , 1985 .

[29]  S. G. Latham,et al.  A silicon liquid-crystal spatial light modulator , 1986 .

[30]  Neil Collings,et al.  An amorphous silicon/chiral smectic spatial light modulator , 1988 .

[31]  B. Abeles,et al.  Electron transport in hydrogenated amorphous silicon: drift mobility and junction capacitance , 1980 .

[32]  K Wagner,et al.  Multilayer optical learning networks. , 1987, Applied optics.

[33]  J. Goodman,et al.  Fiber-Optic Crossbar Switch With Broadcast Capability , 1988 .

[34]  P. J. V. Heerden A New Optical Method of Storing and Retrieving Information , 1963 .

[35]  John N. Lee,et al.  The Current Status Of Two-Dimensional Spatial Light Modulator Technology , 1986, Other Conferences.

[36]  K. Johnson,et al.  Optical interconnection network using polarization-based ferroelectric liquid crystal gates. , 1988, Applied optics.

[37]  Wojciech Kuczynski,et al.  The soft-mode ferroelectric effect , 1988 .

[38]  Mark A. Handschy,et al.  Structures and responses of ferroelectric liquid crystals in the surface-stabilized geometry , 1984 .

[39]  Ferroelectric liquid crystals , 1975 .

[40]  J. I. Thackara,et al.  Fast Nematic Liquid Crystal Spatial Light Modulator , 1988, Optics & Photonics.

[41]  C. Warde 7.2 – Spatial Light Modulators: Applications and Functional Capabilities , 1987 .

[42]  D A Gregory,et al.  Optical characteristics of a deformable-mirror spatial light modulator. , 1988, Optics letters.

[43]  P. W. Smith,et al.  On the physical limits of digital optical switching and logic elements , 1982, The Bell System Technical Journal.

[44]  W. J. Burke,et al.  Multiple storage and erasure of fixed holograms in Fe−doped LiNbO3 , 1975 .

[45]  Jan Grinberg,et al.  A new real-time non-coherent to coherent light image converter - The hybrid field effect liquid crystal light valve , 1975 .

[46]  Noel A. Clark,et al.  Model For The Molecular Origins Of The Polarization In Ferroelectric Liquid Crystals , 1988, Optics & Photonics.

[47]  Demetri Psaltis,et al.  Two-Dimensional Magneto-Optic Spatial Light Modulator For Signal Processing , 1983 .

[48]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Armand R. Tanguay Physical and Technological Limitations of Optical Information Processing and Computing , 1988 .

[50]  Y. H. Lee,et al.  3‐pJ, 82‐MHz optical logic gates in a room‐temperature GaAs‐AlGaAs multiple‐quantum‐well étalon , 1985 .

[51]  P. Ashley,et al.  Amorphous silicon photoconductor in a liquid crystal spatial light modulator. , 1987, Applied optics.

[52]  C C Guest,et al.  Designs and devices for optical bidirectional associative memories. , 1987, Applied optics.

[53]  Terrence J. Sejnowski,et al.  Parallel Networks that Learn to Pronounce English Text , 1987, Complex Syst..

[54]  Kristina M. Johnson,et al.  Optical Logic Gates Using Ferroelectric Liquid Crystals , 1986, Optics & Photonics.

[55]  J. Pérez,et al.  Influence de la déformation plastique sur les propriétés ultrasonores de la glace Ih , 1975 .

[56]  D Psaltis,et al.  Optical implementation of the Hopfield model. , 1985, Applied optics.

[57]  D. Gabor Associative holographic memories , 1969 .

[58]  E. Maniloff,et al.  Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media. , 1989, Optics letters.

[59]  T Minemoto,et al.  Optical parallel logic gate using light modulators with the Pockels effect: applications to fundamental components for optical digital computing. , 1986, Applied optics.

[60]  Demetri Psaltis,et al.  Optical Associative Memory Using Fourier Transform Holograms , 1987 .

[61]  J. S. Judd,et al.  Complexity of Connectionist Learning with Various Node Functions , 1987 .

[62]  J. S. Patel,et al.  Electro-Optics Of Ferroelectric Liquid Crystals , 1987 .

[63]  Wojciech Kuczynski,et al.  Submicrosecond electro‐optic switching in the liquid‐crystal smectic A phase: The soft‐mode ferroelectric effect , 1987 .

[64]  J. E. Henry,et al.  Spatial light modulator and optical dynamic memory using a 6 x 6 array of self-electro-optic-effect devices. , 1988, Optics letters.

[65]  A. Yariv,et al.  Associative memories based on message-bearing optical modes in phase-conjugate resonators. , 1986, Optics letters.

[66]  K. Johnson,et al.  Electro-optic applications of ferroelectric liquid crystals to optical computing , 1988 .