Computing sum of squares decompositions with rational coefficients

Sum of squares (SOS) decompositions for nonnegative polynomials are usually computed numerically, using convex optimization solvers. Although the underlying floating point methods in principle allow for numerical approximations of arbitrary precision, the computed solutions will never be exact. In many applications such as geometric theorem proving, it is of interest to obtain solutions that can be exactly verified. In this paper, we present a numeric-symbolic method that exploits the efficiency of numerical techniques to obtain an approximate solution, which is then used as a starting point for the computation of an exact rational result. We show that under a strict feasibility assumption, an approximate solution of the semidefinite program is sufficient to obtain a rational decomposition, and quantify the relation between the numerical error versus the rounding tolerance needed. Furthermore, we present an implementation of our method for the computer algebra system Macaulay 2.

[1]  Pablo A. Parrilo,et al.  A Macaulay 2 package for computing sum of squares decompositions of polynomials with rational coefficients , 2007, SNC '07.

[2]  Peter J Seiler,et al.  SOSTOOLS: Sum of squares optimization toolbox for MATLAB , 2002 .

[3]  Pablo A. Parrilo,et al.  An Inequality for Circle Packings Proved by Semidefinite Programming , 2004, Discret. Comput. Geom..

[4]  John Harrison,et al.  Verifying Nonlinear Real Formulas Via Sums of Squares , 2007, TPHOLs.

[5]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[6]  B. Reznick,et al.  Sums of squares of real polynomials , 1995 .

[7]  Hans Frenk,et al.  High performance optimization , 2000 .

[8]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[9]  J. Borwein,et al.  Facial reduction for a cone-convex programming problem , 1981, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[10]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[11]  W. J. Thron,et al.  Continued Fractions: Analytic Theory and Applications , 1984 .

[12]  Jiawang Nie,et al.  Sum of squares method for sensor network localization , 2006, Comput. Optim. Appl..

[13]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[14]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .

[15]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[16]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[17]  Bernd Sturmfels,et al.  The algebraic degree of semidefinite programming , 2010, Math. Program..

[18]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[19]  S. Verblunsky,et al.  On Positive Polynomials , 1945 .

[20]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[21]  George J. Pappas,et al.  A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates , 2007, IEEE Transactions on Automatic Control.

[22]  Alex Rosenberg,et al.  -Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras , 1994 .

[23]  C. Bachoc,et al.  New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.

[24]  C. Hillar SUMS OF SQUARES OVER TOTALLY REAL FIELDS ARE RATIONAL SUMS OF SQUARES , 2007, 0704.2824.

[25]  N. Z. Shor Class of global minimum bounds of polynomial functions , 1987 .

[26]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[27]  Kristian Ranestad,et al.  A general formula for the algebraic degree in semidefinite programming , 2007, math/0701877.

[28]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[29]  E. Landau Über die Darstellung definiter Funktionen durch Quadrate , 1906 .

[30]  Pablo A. Parrilo,et al.  Minimizing Polynomial Functions , 2001, Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.

[31]  Pablo A. Parrilo,et al.  A geometric inequality for circle packings , 2002, math/0205278.

[32]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[33]  Pablo A. Parrilo,et al.  Nonlinear control synthesis by convex optimization , 2004, IEEE Transactions on Automatic Control.

[34]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[35]  B. Reznick Extremal PSD forms with few terms , 1978 .

[36]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[37]  Y. Pourchet,et al.  Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques , 1971 .

[38]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[39]  B. Borchers A C library for semidefinite programming , 1999 .

[40]  B. Reznick Some concrete aspects of Hilbert's 17th Problem , 2000 .

[41]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[42]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[43]  Pablo A. Parrilo,et al.  Convex Quantifier Elimination for Semidefinite Programming , 2003 .

[44]  Igor Klep,et al.  Sums of Hermitian Squares and the BMV Conjecture , 2008 .