Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): structure in relation to function

This work reports anatomic and ultrastructural characteristics of bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees. Both the species presented leaf rolling under water stress. The main characteristics observed in these cells were: periclinal wall thinner than the adjacent epidermal wall; abundance of pectic substances in cuticular layer; sinuous anticlinal walls with ramified plasmodesmata; vacuome formed by a developed vacuole or innumerous small vacuoles; abundance of phenolic substances and oil drops. These characteristics suggested the involvement of bulliform cells in the mechanism of foliar involution in the studied species.

[1]  H. Prat General Features of the Epidermis in Zea Mays , 1948 .

[2]  W. Jane,et al.  Morphology and Development of Bulliform Cells in Arundo formosana Hack. , 1991 .

[3]  C. R. Metcalfe Anatomy of the Monocotyledons. I. Gramineae. , 1960 .

[4]  A. Noé Anatomy of Monocotyledons , 1930, Botanical Gazette.

[5]  E. Eleftheriou A Comparative Study of the Leaf Anatomy of the Grasses Andropogon ischaetnum and Chrysopogon gryllus , 1978 .

[6]  M. Wanderley,et al.  Flora fanerogamica do estado de sao paulo , 1996 .

[7]  M. L. Watson Staining of Tissue Sections for Electron Microscopy with Heavy Metals , 1958, The Journal of biophysical and biochemical cytology.

[8]  D. Sutherland Genera Graminum. Grasses of the World , 1987 .

[9]  A. Galston,et al.  Phytochrome controlled nyctinasty in Albinia julibrissin. L Anatomy and fine structure of the pulvinule. , 1970 .

[10]  Concetta Vazzana,et al.  Morphological and ultrastructural aspects of dehydration and rehydration in leaves of Sporobolus stapfianus , 1998, Plant Growth Regulation.

[11]  A. Galston,et al.  PHYTOCHROME CONTROLLED NYCTINASTY IN ALBIZZIA JULIBRISSIN. I. ANATOMY AND FINE STRUCTURE OF THE PULVINULE , 1970 .

[12]  W. Thomson,et al.  Multivacuolate Motor Cells in Mimosa pudica L. , 1977 .

[13]  N. Hallam,et al.  Fine Structural Changes in the Leaves of the Desiccation-Tolerant Plant Talbotia elegans during Extreme Water Stress , 1980, Botanical Gazette.

[14]  H. Toriyama Observational and Experimental Studies of Sensitive Plants , 1954 .

[15]  A. ALLSOPP,et al.  Plant Anatomy , 1966, Nature.

[16]  N. Hallam,et al.  Changes in the Fine Structure of the Desiccation-Tolerant Sedge Coleochloa setifera (Ridley) Gilly Under Water Stress , 1979 .

[17]  L. M. Oliveira,et al.  Respostas fisiológicas de gramíneas promissoras para revegetação ciliar de reservatórios hidrelétricos, submetidas à deficiência hídrica. , 2001 .

[18]  J. Clarke EFFECT OF LEAF ROLLING ON LEAF WATER LOSS IN Triticum spp. , 1986 .

[19]  P. Kramer,et al.  Morphological adaptations of leaves to water stress. , 1980 .

[20]  J. B. F.,et al.  Physiological Plant Anatomy , 1914, Nature.

[21]  Plant Microtechnique , 1941, Nature.

[22]  Bruno Moulia,et al.  Leaves as Shell Structures: Double Curvature, Auto-Stresses, and Minimal Mechanical Energy Constraints on Leaf Rolling in Grasses , 2000, Journal of Plant Growth Regulation.

[23]  W. G. Land Botanical Microtechnique , 1916, Botanical Gazette.

[24]  Silvia Rodrigues Machado,et al.  Estrutura foliar de Loudetiopsis chrysothrix (Nees) Conert e Tristachya leiostachya Nees (Poaceae) , 2005 .

[25]  E. Reynolds THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.

[26]  R. Ellis A procedure for standardizing comparative leaf anatomy in the Poaceae. I. The leaf-blade as viewed in transverse section , 1976 .

[27]  Tatiane Maria Rodrigues,et al.  Anatomia e ultra-estrutura do pulvino primário de Pterodon pubescens Benth. (Fabaceae - Faboideae) , 2004 .

[28]  A. Galston Plant Physiology , 1967, Nature.