Direct measurement of exciton valley coherence in monolayer WSe2

Coherent valley exciton dynamics are directly probed in a monolayer transition metal dichalcogenide, providing access to the valley coherence time and decoherence mechanisms — crucial for developing methods for manipulating the valley pseudospin.

[1]  Luyi Yang,et al.  Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2 , 2015, Nature Physics.

[2]  Valley excitons in two-dimensional semiconductors , 2015, 1507.08103.

[3]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[4]  Wei Ruan,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[5]  Zhi‐zhan Xu,et al.  Lasing without inversion and inversion without lasing in the same energy-level system , 1992 .

[6]  Lukin,et al.  Experimental Demonstration of Laser Oscillation without Population Inversion via Quantum Interference in Rb. , 1995, Physical review letters.

[7]  Leo,et al.  Quantum beats of excitons in quantum wells. , 1990, Physical review letters.

[8]  Timothy C. Berkelbach,et al.  Theory of neutral and charged excitons in monolayer transition metal dichalcogenides , 2013, 1305.4972.

[9]  Linyou Cao,et al.  Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. , 2014, Nano letters.

[10]  Tao Yu,et al.  Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS 2 , 2013, 1401.0047.

[11]  Andreas Knorr,et al.  Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides , 2015, Nature Communications.

[12]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[14]  R Jimenez,et al.  A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy. , 2009, The Review of scientific instruments.

[15]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[16]  A. Balocchi,et al.  Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 , 2014, 1402.6009.

[17]  M. Z. Maialle,et al.  Exciton spin dynamics in quantum wells. , 1993, Physical review. B, Condensed matter.

[18]  P. Mallet,et al.  Single photon emitters in exfoliated WSe2 structures. , 2015, Nature nanotechnology.

[19]  J. Grossman,et al.  Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. , 2015, Nano letters.

[20]  S. T. Cundiff,et al.  A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy. , 2009, The Review of scientific instruments.

[21]  Huili Grace Xing,et al.  Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. , 2013, ACS nano.

[22]  G. Wang,et al.  Giant enhancement of the optical second-harmonic emission of WSe(2) monolayers by laser excitation at exciton resonances. , 2015, Physical review letters.

[23]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence , 2013 .

[24]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[25]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[26]  Xiaodong Cui,et al.  Exciton Binding Energy of Monolayer WS2 , 2014, Scientific Reports.

[27]  I. Favero,et al.  Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot , 2006, cond-mat/0610346.

[28]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[29]  Xiaodong Xu,et al.  Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides , 2014, Nature Communications.

[30]  I. Appelbaum,et al.  Anisotropy-driven spin relaxation in germanium. , 2013, Physical review letters.

[31]  Kim,et al.  Exciton dynamics in GaAs quantum wells under resonant excitation. , 1994, Physical review. B, Condensed matter.

[32]  A. MacDonald,et al.  Exciton band structure of monolayer MoS$_2$ , 2015, 1501.02273.

[33]  A. Splendiani,et al.  Emerging Photoluminescence in Monolayer , 2010 .

[34]  Lain-Jong Li,et al.  Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.

[35]  D. Oxtoby Hydrodynamic theory for vibrational dephasing in liquids , 1979 .

[36]  Gavrielides,et al.  Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing. , 1989, Physical review letters.

[37]  Ji Feng,et al.  Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump-probe spectroscopy. , 2013, ACS nano.

[38]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[39]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[40]  A. Kis,et al.  Optically active quantum dots in monolayer WSe2. , 2014, Nature nanotechnology.

[41]  Hebin Li,et al.  Optical 2-D Fourier Transform Spectroscopy of Excitons in Semiconductor Nanostructures , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[42]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[43]  Fengnian Xia,et al.  Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.

[44]  Stephan Roche,et al.  Pseudospin-driven spin relaxation mechanism in graphene , 2014, Nature Physics.

[45]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[46]  P. Bhattacharya,et al.  Raman coherence beats from entangled polarization eigenstates in InAs quantum dots. , 2002, Physical review letters.

[47]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[48]  Galan Moody,et al.  Resonance lineshapes in two-dimensional Fourier transform spectroscopy. , 2010, Optics express.

[49]  Harris,et al.  Observation of electromagnetically induced transparency. , 1991, Physical review letters.

[50]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[51]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.