An iterative SVD-Krylov based algorithm for model reduction of MIMO systems

In this paper we propose a model reduction algorithm for approximation of large-scale MIMO systems, which combines the SVD and Krylov based techniques. The reduced model is also asymptotically stable and a tangential condition can be satisfied. Numerical examples demonstrate the performance of the proposed approach and we compare it with the existing method MIRIA.

[1]  Serkan Gugercin,et al.  H2 Model Reduction for Large-Scale Linear Dynamical Systems , 2008, SIAM J. Matrix Anal. Appl..

[2]  Serkan Gugercin,et al.  An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems , 2008 .

[3]  Wu-Shiung Feng,et al.  The Multiple Point Global Lanczos Method for Multiple-Inputs Multiple-Outputs Interconnect Order Reductions , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[4]  Eric James Grimme,et al.  Krylov Projection Methods for Model Reduction , 1997 .

[5]  Wu-Shiung Feng,et al.  The Multiple Point Global Lanczos Method for MIMO Interconnect Model-Order Reductions , 2006, APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits and Systems.

[6]  Serkan Gugercin,et al.  Model reduction of large-scale systems by least squares , 2006 .

[7]  Paul Van Dooren,et al.  Model Reduction of MIMO Systems via Tangential Interpolation , 2005, SIAM J. Matrix Anal. Appl..

[8]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[9]  Arjan van der Schaft,et al.  Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity , 2010, Autom..

[10]  Clifford T. Mullis,et al.  Synthesis of minimum roundoff noise fixed point digital filters , 1976 .

[11]  Yimin Wei,et al.  Order reduction of bilinear MIMO dynamical systems using new block Krylov subspaces , 2009, Comput. Math. Appl..

[12]  Chuanqing Gu,et al.  Model reduction for large-scale dynamical systems via equality constrained least squares , 2010, J. Comput. Appl. Math..

[13]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[14]  Paul Van Dooren,et al.  Model Reduction of Large-Scale Dynamical Systems , 2004, International Conference on Computational Science.

[15]  Wu-Shiung Feng,et al.  Model-order reductions for MIMO systems using global Krylov subspace methods , 2008, Math. Comput. Simul..

[16]  A. Antoulas,et al.  A Rational Krylov Iteration for Optimal H 2 Model Reduction , 2006 .

[17]  Angelika Bunse-Gerstner,et al.  h2-norm optimal model reduction for large scale discrete dynamical MIMO systems , 2010, J. Comput. Appl. Math..