Phase equilibria of the Co-Cr-Mn ternary system at 700 ℃

[1]  Fucheng Zhang,et al.  A σ phase-γ phase orientation relationship observed in solidification of the 7Mo super-austenitic stainless steel , 2022, Journal of Materials Research and Technology.

[2]  J. Joubert Intermetallic compounds of the Cr–Mn system investigated using in situ powder neutron diffraction: The reported order-disorder transformation of the σ phase elucidated , 2022, Intermetallics.

[3]  R. Ritchie,et al.  Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin , 2022, Science.

[4]  K. Christofidou,et al.  The influence of Fe variations on the phase stability of CrMnFexCoNi alloys following long-duration exposures at intermediate temperatures , 2021 .

[5]  Jingkun Li,et al.  Effect of superplastic deformation on precipitation behavior of sigma phase in 3207 duplex stainless steel , 2021 .

[6]  C. Tasan,et al.  High entropy alloys: A focused review of mechanical properties and deformation mechanisms , 2020, Acta Materialia.

[7]  Yuan Wu,et al.  Cooperative deformation in high-entropy alloys at ultralow temperatures , 2020, Science Advances.

[8]  Ya Liu,et al.  Phase stability and microhardness of CoCrFeMnxNi2-x high entropy alloys , 2019, Journal of Alloys and Compounds.

[9]  Dierk Raabe,et al.  High-entropy alloys , 2019, Nature Reviews Materials.

[10]  Nikita Stepanov,et al.  Effect of second phase particles on mechanical properties and grain growth in a CoCrFeMnNi high entropy alloy , 2019, Materials Science and Engineering: A.

[11]  Dapeng Xu,et al.  A review on fundamental of high entropy alloys with promising high–temperature properties , 2018, Journal of Alloys and Compounds.

[12]  M. Mills,et al.  Effect of mixed partial occupation of metal sites on the phase stability of γ-Cr23−xFexC6 (x = 0–3) carbides , 2018, Scientific Reports.

[13]  E. Kozeschnik,et al.  Revised thermodynamic description of the Fe-Cr system based on an improved sublattice model of the σ phase , 2018 .

[14]  A. Rollett,et al.  Austenite-ferrite interface crystallography dependence of sigma phase precipitation using the five-parameter characterization approach , 2017 .

[15]  C. Shek,et al.  Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100−x)Cox high entropy alloys , 2017 .

[16]  Dierk Raabe,et al.  Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures , 2016 .

[17]  Huahai Mao,et al.  Thermodynamic re-assessment of the Co–Cr system supported by first-principles calculations , 2016 .

[18]  H. Stone,et al.  Research data supporting: "Precipitation in the Equiatomic High-Entropy Alloy CrMnFeCoNi" , 2015 .

[19]  E. George,et al.  Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation , 2015 .

[20]  R. Scattergood,et al.  Tensile properties of low-stacking fault energy high-entropy alloys , 2015 .

[21]  T. Nieh,et al.  Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures , 2014 .

[22]  V. Rajkumar,et al.  Thermodynamic modeling of the Fe–Mo system coupled with experiments and ab initio calculations , 2014 .

[23]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[24]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[25]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[26]  D. Raabe,et al.  Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope , 2009 .

[27]  Honghui Xu,et al.  Experimental identification of the degenerated equilibrium and thermodynamic modeling in the Al-Nb system , 2008 .

[28]  J. Joubert Crystal chemistry and Calphad modeling of the σ phase , 2008 .

[29]  Zi-kui Liu,et al.  Modeling of Ni–Cr–Mo based alloys: Part I—phase stability , 2006 .

[30]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[31]  H. Okamoto Co-Cr (Cobalt-Chromium) , 2003 .

[32]  H. Okamoto Co-Mn (Cobalt-Manganese) , 2002 .

[33]  Tae-Ho Lee,et al.  Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900 °C , 2000 .

[34]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[35]  Weiming Huang An Assessment of the Co-Mn System , 1989 .

[36]  C. Allibert,et al.  CoCr binary system: experimental re-determination of the phase diagram and comparison with the diagram calculated from the thermodynamic data , 1978 .

[37]  L. Singhal,et al.  The formation of ferrite and sigma-phase in some austenitic stainless steels , 1968 .

[38]  M. Lewis Precipitation of (Fe, Cr) sigma phase from austenite , 1966 .

[39]  S. Nenno,et al.  Orientation Relationships between Gamma (f.c.c.) and Sigma Phases in an Iron-Chromium-Nickel Alloy , 1962 .

[40]  K. Hiege Metallographische Mitteilungen aus dem Institut für physikalische Chemie in Göttingen. LXXXII. Die Legierungen des Mangans mit Kobalt , 1913 .

[41]  Kurt Lewkonja Über die Legierungen des Kobalts mit Zinn, Antimon, Blei, Wismut, Thallium, Zink, Cadmium, Chrom und Silicium , 1908 .

[42]  W. B. Pearson,et al.  Pearson's crystal data : crystal structure database for inorganic compounds , 2007 .

[43]  L. Kaufman,et al.  Coupled phase diagrams and thermochemical data for transition metal binary systems-VI , 1978 .