Near Time-optimal Constrained Trajectory Planning on Outdoor Terrain

We present an outdoor terrain planner that finds near optimal trajectories under dynamic and kinematic constraints. The planner can find solutions in close to real time by relaxing some of the assumptions associated with costly rigid body simulation and complex terrain surface interactions. Our system is based on control-driven Proba bilistic Roadmaps and can efficiently find and optimize a near time-minimum trajectory. We present simulated results with artificial environments, as well as a real robot experiment using Segway Robotic Mobile Platform.

[1]  Ayanna M. Howard,et al.  Fuzzy terrain-based path planning for planetary rovers , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[2]  Thierry Fraichard,et al.  Dynamic trajectory planning with dynamic constraints: A 'state-time space' approach , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[3]  Thierry Siméon,et al.  Motion planning on rough terrain for an articulated vehicle in presence of uncertainties , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[4]  Andrew Howard,et al.  Design and use paradigms for Gazebo, an open-source multi-robot simulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[5]  Alfred C. Rufer,et al.  JOE: a mobile, inverted pendulum , 2002, IEEE Trans. Ind. Electron..

[6]  Zvi Shiller,et al.  Dynamic motion planning of autonomous vehicles , 1991, IEEE Trans. Robotics Autom..

[7]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1998, IEEE Trans. Robotics Autom..

[8]  Moëz Cherif,et al.  Motion planning for an All-Terrain Autonomous Vehicle , 1999 .

[9]  P. Cheng,et al.  RRT-based trajectory design for autonomous automobiles and spacecraft , 2001 .

[10]  Zheng Sun,et al.  On energy-minimizing paths on terrains for a mobile robot , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[11]  Thierry Fraichard,et al.  Continuous-curvature path planning for car-like vehicles , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[12]  Moëz Cherif,et al.  Motion planning for all-terrain vehicles: a physical modeling approach for coping with dynamic and contact interaction constraints , 1999, IEEE Trans. Robotics Autom..

[13]  Lynne E. Parker,et al.  Performance-based rough terrain navigation for nonholonomic mobile robots , 2003, IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468).

[14]  Moëz Cherif Kinodynamic motion planning for all-terrain wheeled vehicles , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[15]  T. Kubota,et al.  Path planning for newly developed microrover , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[16]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[17]  Steven M. LaValle,et al.  From Dynamic Programming to RRTs: Algorithmic Design of Feasible Trajectories , 2003, Control Problems in Robotics.

[18]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[19]  Thierry Siméon,et al.  Motion generation for a rover on rough terrains , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[20]  Thierry Siméon,et al.  A practical motion planner for all-terrain mobile robots , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[21]  Steven M. LaValle,et al.  Reducing metric sensitivity in randomized trajectory design , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[22]  Thierry Siméon,et al.  Robust motion planning for rough terrain navigation , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[23]  Ray Jarvis,et al.  Path planning for a mobile robot in a rough terrain environment , 2002, Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02..

[24]  Steven Dubowsky,et al.  Rapid physics-based rough-terrain rover planning with sensor and control uncertainty , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[25]  Ray Jarvis An articulated six wheel drive robot for very rough terrain navigation , 2002 .

[26]  M. H. Overmars,et al.  A paradigm for probabilistic path planning , 1995 .

[27]  C. Urmson Locally Randomized Kinodynamic Motion Planning for Robots in Extreme Terrain , 2002 .

[28]  G. Swaminathan Robot Motion Planning , 2006 .

[29]  Zvi Shiller,et al.  Motion planning for Mars Rover , 1999, Proceedings of the First Workshop on Robot Motion and Control. RoMoCo'99 (Cat. No.99EX353).

[30]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[31]  Steven Dubowsky,et al.  On-line terrain parameter estimation for planetary rovers , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).