A review of anode materials development in solid oxide fuel cells

[1]  J. Goodenough,et al.  Superior perovskite oxide-ion conductor; Strontium- and magnesium-doped LaGaO3 : III. Performance tests of single ceramic fuel cells , 2005 .

[2]  G. Spinolo,et al.  Nickel/Yttria‐Stabilized Zirconia Cermets from Combustion Synthesis: Effect of Process Parameters on Product Microstructure , 2005 .

[3]  J. Jean,et al.  Effect of Densification Mismatch on Camber Development during Cofiring of Nickel‐Based Multilayer Ceramic Capacitors , 2005 .

[4]  M. Mogensen,et al.  Effect of Nickel Oxide/Yttria‐Stabilized Zirconia Anode Precursor Sintering Temperature on the Properties of Solid Oxide Fuel Cells , 2004 .

[5]  Meilin Liu,et al.  A simple and cost-effective approach to fabrication of dense ceramic membranes on porous substrates , 2004 .

[6]  A. Selçuk,et al.  Strength and Toughness of Tape‐Cast Yttria‐Stabilized Zirconia , 2004 .

[7]  T. Ishihara,et al.  Preparation of Yttria‐Stabilized Zirconia Thin Films on Strontium‐Doped LaMnO3 Cathode Substrates via Electrophoretic Deposition for Solid Oxide Fuel Cells , 2004 .

[8]  E. Djurado,et al.  Catalytic and Electrochemical Properties of Doped Lanthanum Chromites as New Anode Materials for Solid Oxide Fuel Cells , 2004 .

[9]  D. Ivey,et al.  A new vapor deposition method to form composite anodes for solid oxide fuel cells , 2004 .

[10]  L. Gauckler,et al.  Electrophoretic Deposition of Zirconia on Porous Anodic Substrates , 2004 .

[11]  S. Chan,et al.  Development of LSM/YSZ composite cathode for anode-supported solid oxide fuel cells , 2004 .

[12]  L. Gauckler,et al.  Solid oxide fuel cells with electrolytes prepared via spray pyrolysis , 2004 .

[13]  K. Murata,et al.  Morphology control of Ni–YSZ cermet anode for lower temperature operation of SOFCs , 2004 .

[14]  Mogens Bjerg Mogensen,et al.  Conversion of Hydrocarbons in Solid Oxide Fuel Cells , 2003 .

[15]  Steven J. Visco,et al.  Supported Electrolyte Thin Film Synthesis of Solid Oxide Fuel Cells , 2003 .

[16]  H. Yokokawa Understanding Materials Compatibility , 2003 .

[17]  S. Jiang,et al.  Chemical interactions between 3 mol% yttria-zirconia and Sr-doped lanthanum manganite , 2003 .

[18]  R. Kikuchi,et al.  Effect of precious metal addition to Ni-YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode , 2003 .

[19]  王世忠,et al.  Improvement of the performance of fuel cells anodes with Sm3+ doped CeO2 , 2003 .

[20]  S. Jiang,et al.  Sintering behavior of Ni/Y2O3-ZrO2cermet electrodes of solid oxide fuel cells , 2003 .

[21]  J. Otomo,et al.  Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique , 2003 .

[22]  J. Sfeir LaCrO3-based anodes: stability considerations , 2003 .

[23]  S. Jiang,et al.  Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cells , 2003 .

[24]  San Ping Jiang,et al.  Effect of contact between electrode and current collector on the performance of solid oxide fuel cells , 2003 .

[25]  S. Chan,et al.  Development of ( La , Sr ) MnO3-Based Cathodes for Intermediate Temperature Solid Oxide Fuel Cells , 2003 .

[26]  J. Vohs,et al.  Role of Hydrocarbon Deposits in the Enhanced Performance of Direct-Oxidation SOFCs , 2003 .

[27]  S. Corbin,et al.  Development of solid oxide fuel cell anodes using metal-coated pore-forming agents , 2003 .

[28]  F. Tietz,et al.  Influence of pre- and post-heat treatment of anode substrates on the properties of DC-sputtered YSZ electrolyte films , 2003 .

[29]  J. Canales‐Vázquez,et al.  Electrical properties in La2Sr4Ti6O19$minus;$delta;: a potential anode for high temperature fuel cells , 2003 .

[30]  Jooho Moon,et al.  The impact of anode microstructure on the power generating characteristics of SOFC , 2003 .

[31]  Scott A. Barnett,et al.  Operation of anode-supported solid oxide fuel cells on methane and natural gas , 2003 .

[32]  S. Tanasescu,et al.  Thermodynamic characterisation of some doped lanthanum chromites used as interconnects in SOFC , 2003 .

[33]  J. Frade,et al.  Ni1 xCox/YSZ cermet anodes for solid oxide fuel cells , 2002 .

[34]  E. Ivers-Tiffée,et al.  Development of a multilayer anode for solid oxide fuel cells , 2002 .

[35]  M. Mogensen,et al.  Mixed conductor anodes: Ni as electrocatalyst for hydrogen conversion , 2002 .

[36]  J. Irvine,et al.  Structural and property investigations of Strontium Galloniobate , 2002 .

[37]  Masayuki Dokiya,et al.  SOFC system and technology , 2002 .

[38]  E. Kemnitz,et al.  Synthesis and characterization of copper-stabilized zirconia as an anode material for SOFC , 2002 .

[39]  Ellen Ivers-Tiffée,et al.  Oxidation of H2, CO and methane in SOFCs with Ni/YSZ-cermet anodes , 2002 .

[40]  B. Lundqvist,et al.  Quantum origin of the oxygen storage capability of ceria. , 2002, Physical review letters.

[41]  Mogens Bjerg Mogensen,et al.  Progress in understanding SOFC electrodes , 2002 .

[42]  A. Petric,et al.  Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells , 2002 .

[43]  Y. Hirata,et al.  Thermal stability of nanometer-sized NiO and Sm-doped ceria powders , 2002 .

[44]  J. Vohs,et al.  An Examination of Lanthanide Additives on the Performance of Cu-YSZ Cermet Anodes , 2002 .

[45]  Hee Chun Lim,et al.  Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel , 2002 .

[46]  M. Naito,et al.  Performance and stability of SOFC anode fabricated from NiO-YSZ composite particles , 2002 .

[47]  M. Primet,et al.  Surface Properties and Physicochemical Characterizations of a New Type of Anode Material, La1−xSrxCr1−yRuyO3−δ, for a Solid Oxide Fuel Cell under Methane at Intermediate Temperature , 2002 .

[48]  J. Stevenson,et al.  Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate , 2002 .

[49]  Hyuk Kim,et al.  Fabrication of Highly Porous Yttria-Stabilized Zirconia by Acid Leaching Nickel from a Nickel- Yttria-Stabilized Zirconia Cermet , 2002 .

[50]  Ki Hyun Yoon,et al.  Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet , 2002 .

[51]  Jonghee Han,et al.  Performance of anode-supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol–gel coating technique , 2002 .

[52]  M. Marinšek,et al.  Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis , 2002 .

[53]  Raymond J. Gorte,et al.  Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon , 2002 .

[54]  W. L. Worrell,et al.  Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells , 2002 .

[55]  J. Frade,et al.  Assessment of Ni/YSZ anodes prepared by combustion synthesis , 2002 .

[56]  Mogens Bjerg Mogensen,et al.  Microstructural and chemical changes at the Ni/YSZ interface , 2001 .

[57]  Changrong Xia,et al.  Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing , 2001 .

[58]  F. Tietz,et al.  Porous Ni/TiO2 substrates for planar solid oxide fuel cell applications , 2001 .

[59]  Günter Schiller,et al.  Development and characterization of vacuum plasma sprayed thin film solid oxide fuel cells , 2001 .

[60]  Søren Linderoth,et al.  Effect of NiO-to-Ni transformation on conductivity and structure of yttria-stabilized ZrO2 , 2001 .

[61]  M. Mori,et al.  Thermal Expansion Behavior of Titanium‐Doped La(Sr)CrO3 Solid Oxide Fuel Cell Interconnects , 2001 .

[62]  J. Fouletier,et al.  Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature , 2001 .

[63]  S. Chan,et al.  Reliability and accuracy of measured overpotential in a three-electrode fuel cell system , 2001 .

[64]  N. Xanthopoulos,et al.  Lanthanum Chromite Based Catalysts for Oxidation of Methane Directly on SOFC Anodes , 2001 .

[65]  J.P.P. Huijsmans,et al.  Ceramics in solid oxide fuel cells , 2001 .

[66]  John B. Goodenough,et al.  Increasing Power Density of LSGM-Based Solid Oxide Fuel Cells Using New Anode Materials , 2001 .

[67]  L. Gauckler,et al.  The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes , 2001 .

[68]  S. Badwal Stability of solid oxide fuel cell components , 2001 .

[69]  J. Labrincha,et al.  A combustion synthesis method to obtain alternative cermet materials for SOFC anodes , 2001 .

[70]  Raymond J. Gorte,et al.  Tape Cast Solid-Oxide Fuel Cells for the Direct Oxidation of Hydrocarbons , 2001 .

[71]  A. Selçuk,et al.  The influence of electrodes on the strength of planar zirconia solid oxide fuel cells , 2001 .

[72]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[73]  R. Maric,et al.  Interactions of a La0.9Sr0.1Ga0.8Mg0.2O3−δ electrolyte with Fe2O3, Co2O3 and NiO anode materials , 2001 .

[74]  K. Ahmed,et al.  Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells , 2000 .

[75]  A. Gupta,et al.  Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology ☆ , 2000 .

[76]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[77]  F. Tietz,et al.  Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells , 2000 .

[78]  P. Vernoux,et al.  Alternative anode material for gradual methane reforming in solid oxide fuel cells , 2000 .

[79]  T. Etsell,et al.  Polarized electrochemical vapor deposition for cermet anodes in solid oxide fuel cells , 2000 .

[80]  S. Jiang,et al.  Deposition of Chromium Species at Sr‐Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells. I. Mechanism and Kinetics , 2000 .

[81]  L. Gauckler,et al.  Reaction mechanism of Ni pattern anodes for solid oxide fuel cells , 2000 .

[82]  P. Fragnaud,et al.  Preparation of thin film SOFCs working at reduced temperature , 2000 .

[83]  Trikur A. Ramanarayanan,et al.  Carbon‐Induced Corrosion of Nickel Anode , 2000 .

[84]  Raymond J. Gorte,et al.  Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid‐Oxide Fuel Cell , 2000 .

[85]  N. Sakai,et al.  Oxygen Transport Properties of La1 − x Ca x CrO3 − δ as an Interconnect Material of a Solid Oxide Fuel Cell , 2000 .

[86]  Frank Tietz,et al.  Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells , 2000 .

[87]  Toshio Maruyama,et al.  Properties of Ni/YSZ cermet as anode for SOFC , 2000 .

[88]  Jun Akikusa,et al.  Characterization of solid oxide fuel cell using doped lanthanum gallate , 2000 .

[89]  F. Tietz,et al.  Evaluation of commercial nickel oxide powders for components in solid oxide fuel cells , 2000 .

[90]  San Ping Jiang,et al.  Fabrication and performance of Ni/3 mol% Y2O3–ZrO2 cermet anodes for solid oxide fuel cells , 2000 .

[91]  Hong-lim Lee,et al.  Oxygen ion conductivity and cell performance of La0.9Ba0.1Ga1-xMgxO3-δ electrolyte , 2000 .

[92]  Ching-ju Wen,et al.  The Overpotential of Nickel/Yttria‐Stabilized Zirconia Cermet Anodes Used in Solid Oxide Fuel Cells , 2000 .

[93]  Anil V. Virkar,et al.  The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells , 2000 .

[94]  Günter Schiller,et al.  Plasma Sprayed Thin-Film SOFC For Reduced Operating Temperature , 2000 .

[95]  D. Perednis,et al.  Fabrication of thin electrolytes for second-generation solid oxide fuel cells , 2000 .

[96]  O. Yamamoto Solid oxide fuel cells: fundamental aspects and prospects , 2000 .

[97]  Brian C. H. Steele,et al.  Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C , 2000 .

[98]  Mogens Bjerg Mogensen,et al.  Physical, chemical and electrochemical properties of pure and doped ceria , 2000 .

[99]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[100]  Nigel P. Brandon,et al.  SOFC technology development at Rolls-Royce , 2000 .

[101]  Toru Inagaki,et al.  High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte: I. Ni–SDC cermet anode , 2000 .

[102]  Mogens Bjerg Mogensen,et al.  Structure/Performance Relations for Ni/Yttria‐Stabilized Zirconia Anodes for Solid Oxide Fuel Cells , 2000 .

[103]  I. Metcalfe,et al.  La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells , 2000 .

[104]  H. Verweij,et al.  The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes , 2000 .

[105]  W. L. Worrell,et al.  A Novel Method for Preparing Anode Cermets for Solid Oxide Fuel Cells , 1999 .

[106]  Toru Inagaki,et al.  Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrolyte , 1999 .

[107]  Seungdoo Park,et al.  Direct Oxidation of Hydrocarbons in a Solid Oxide Fuel Cell: I. Methane Oxidation , 1999 .

[108]  P. Slater,et al.  Synthesis and electrical characterisation of the tetragonal tungsten bronze type phases, (Ba/Sr/Ca/La)0 6MxNb1−xO3−δ (M=Mg, Ni, Mn, Cr, Fe, In, Sn): evaluation as potential anode materials for solid oxide fuel cells , 1999 .

[109]  M. Watanabe,et al.  HIGH PERFORMANCE ELECTRODE FOR MEDIUM-TEMPERATURE SOLID OXIDE FUEL CELLS LA(SR)COO3 CATHODE WITH CERIA INTERLAYER ON ZIRCONIA ELECTROLYTE , 1999 .

[110]  D. Stöver,et al.  Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix® process , 1999 .

[111]  S. A. Barnett,et al.  A direct-methane fuel cell with a ceria-based anode , 1999, Nature.

[112]  C. Bagger,et al.  A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance , 1999 .

[113]  S. Jiang,et al.  An electrode kinetics study of H2 oxidation on Ni/Y2O3–ZrO2 cermet electrode of the solid oxide fuel cell , 1999 .

[114]  Brian C. H. Steele,et al.  Fuel-cell technology: Running on natural gas , 1999, Nature.

[115]  S. Jiang,et al.  H2 oxidation on Ni/Y-TZP cermet electrodes – a comparison of electrode behaviour by GCI and EIS techniques , 1999 .

[116]  C. Yokoyama,et al.  Effect of the Steam‐Methane Ratio on Reactions Occurring on Ni/Yttria‐Stabilized Zirconia Cermet Anodes Used in Solid‐Oxide Fuel Cells , 1999 .

[117]  A. Mcevoy,et al.  Stability of calcium substituted lanthanum chromites used as SOFC anodes for methane oxidation , 1999 .

[118]  I. Vinke,et al.  Reaction of hydrogen/water mixtures on nickel-zirconia cermet electrodes. II. AC polarization characteristics , 1999 .

[119]  Yi Jiang,et al.  Electrochemical performance of mixed ionic–electronic conducting oxides as anodes for solid oxide fuel cell , 1999 .

[120]  Mogens Bjerg Mogensen,et al.  Reaction of CO/CO2 gas mixtures on Ni–YSZ cermet electrodes , 1999 .

[121]  P. Slater,et al.  Niobium based tetragonal tungsten bronzes as potential anodes for solid oxide fuel cells: synthesis and electrical characterisation , 1999 .

[122]  Young Min Park,et al.  Microstructure and electrical properties of YSZ–NiO composites , 1999 .

[123]  D. Stöver,et al.  Microstructure and Interdiffusion Phenomena in YSZ-CGO Composite Electrolyte , 1999 .

[124]  J. D. Carter,et al.  Development of Solid‐Oxide Fuel Cells That Operate at 500°C , 1999 .

[125]  Makiko Sato,et al.  Contribution of the Internal Active Three‐Phase Zone of Ni‐Zirconia Cermet Anodes on the Electrode Performance of SOFCs , 1999 .

[126]  A. J. Feighery,et al.  Phase Relations at 1500°C in the Ternary System ZrO2–Y2O3–TiO2 , 1999 .

[127]  Hong-lim Lee,et al.  Preparation of ZrO2-coated NiO powder using surface-induced coating , 1999 .

[128]  Caine M. Finnerty,et al.  Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane , 1998 .

[129]  S. Primdahl,et al.  Relationship between strength and failure mode of ceramic multilayers , 1998 .

[130]  J. Guindet,et al.  Gradual Internal Methane Reforming in Intermediate‐Temperature Solid‐Oxide Fuel Cells , 1998 .

[131]  T. Hirai,et al.  Effects of sinterability of YSZ powder and NiO content on characteristics of Ni-YSZ cermets , 1998 .

[132]  Ludwig J. Gauckler,et al.  La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2(g)|YSZ system , 1998 .

[133]  S. Aruna,et al.  Synthesis and properties of Ni-YSZ cermet: anode material for solid oxide fuel cells , 1998 .

[134]  U. Anselmi-Tamburini,et al.  Electrical properties of Ni / YSZ cermets obtained through combustion synthesis , 1998 .

[135]  Mogens Bjerg Mogensen,et al.  Gas Conversion Impedance: A Test Geometry Effect in Characterization of Solid Oxide Fuel Cell Anodes , 1998 .

[136]  W. Lehnert,et al.  Structural properties of SOFC anodes and reactivity , 1998 .

[137]  J. Rostrup-Nielsen,et al.  Carbon formation on nickel and nickel-copper alloy catalysts , 1998 .

[138]  A. Gupta,et al.  Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells , 1998 .

[139]  Tohru Yamamoto,et al.  Thermal Expansion of Nickel‐Zirconia Anodes in Solid Oxide Fuel Cells during Fabrication and Operation , 1998 .

[140]  J. Winkler,et al.  Geometric Requirements of Solid Electrolyte Cells with a Reference Electrode , 1998 .

[141]  H. Inaba,et al.  Electrochemical Oxidation in a CH 4 ‐ H 2 O System at the Interface of a Pt Electrode and Y 2 O 3‐Stabilized ZrO2 Electrolyte I. Determination of the Predominant Reaction Process , 1998 .

[142]  Hiroyuki Uchida,et al.  High‐Performance Electrode for Medium‐Temperature Solid Oxide Fuel Cells Effects of Composition and Microstructures on Performance of Ceria‐Based Anodes , 1998 .

[143]  Werner Lehnert,et al.  Correlated Resistor Network Study of Porous Solid Oxide Fuel Cell Anodes , 1997 .

[144]  S. Jiang,et al.  Hydrogen Oxidation at the Nickel and Platinum Electrodes on Yttria‐Tetragonal Zirconia Electrolyte , 1997 .

[145]  Mogens Bjerg Mogensen,et al.  Oxidation of hydrogen on Ni/yttria-stabilized zirconia cermet anodes , 1997 .

[146]  Werner Lehnert,et al.  Degradation of Solid Oxide Fuel Cell Anodes Due to Sintering of Metal Particles Correlated Percolation Model , 1997 .

[147]  R. Moos,et al.  Electron mobility of Sr1-xLaxTiO3 ceramics between 600 °C and 1300 °C , 1997 .

[148]  R. Donelson,et al.  Electrode supported solid oxide fuel cells: Electrolyte films prepared by DC magnetron sputtering , 1997 .

[149]  S. D. Souza Thin-film solid oxide fuel cell with high performance at low-temperature , 1997 .

[150]  N. Yamazoe,et al.  Redox Behavior of Ni-Yttria Stabilized Zirconia (YSZ) Cermets and Oxygen Gas Shielding properties , 1997 .

[151]  A. Moropoulou,et al.  Material characterization in support of the development of an anode substrate for solid oxide fuel cells , 1997 .

[152]  Seung M. Oh,et al.  Microstructure and anodic properties of Ni/YSZ cermets in solid oxide fuel cells , 1997 .

[153]  K. Eguchi Ceramic materials containing rare earth oxides for solid oxide fuel cell , 1997 .

[154]  Tohru Yamamoto,et al.  Configurational and Electrical Behavior of Ni‐YSZ Cermet with Novel Microstructure for Solid Oxide Fuel Cell Anodes , 1997 .

[155]  H. Tuller,et al.  Stability and mixed ionic electronic conduction in Gd2(Ti1 − xMox)2O7 under anodic conditions , 1997 .

[156]  W. L. Worrell,et al.  Electronic conduction mechanism in yttria-stabilized zirconia-titania under reducing atmospheres , 1996 .

[157]  A. Khanna,et al.  Compatibility of perovskite contact layers between cathode and metallic interconnector plates of SOFCs , 1996 .

[158]  A. Tsoga,et al.  Wettability and interfacial reactions in the systems NiYSZ and Ni/Ti-TiO2/YSZ , 1996 .

[159]  Tohru Yamamoto,et al.  Chemical stability between NiO/8YSZ cermet and alkaline-earth metal substituted lanthanum chromite , 1996 .

[160]  Andrew Dicks,et al.  Hydrogen generation from natural gas for the fuel cell systems of tomorrow , 1996 .

[161]  Koichi Yamada,et al.  Oxidation mechanism and effective anode thickness of SOFC for dry methane fuel , 1996 .

[162]  D. Stolten,et al.  Materials, interfaces and production techniques for planar solid oxide fuel cells , 1996 .

[163]  Kevin Kendall,et al.  The reduction of nickelzirconia cermet anodes and the effects on supported thin electrolytes , 1996 .

[164]  Tohru Yamamoto,et al.  Improved Microstructure of Ni-YSZ Cermet Anode for SOFC with a Long Term Stability , 1996 .

[165]  Svein Sunde,et al.  Monte Carlo Simulations of Polarization Resistance of Composite Electrodes for Solid Oxide Fuel Cells , 1996 .

[166]  Tomoo Iwata,et al.  Characterization of Ni‐YSZ Anode Degradation for Substrate‐Type Solid Oxide Fuel Cells , 1996 .

[167]  N. Sakai,et al.  Oxidation and steam reforming of CH{sub 4} on Ni and Fe anodes under low humidity conditions in solid oxide fuel cells , 1996 .

[168]  Svein Sunde,et al.  Monte Carlo Simulations of Conductivity of Composite Electrodes for Solid Oxide Fuel Cells , 1996 .

[169]  V. Belyaev,et al.  Internal steam reforming of methane over Ni-based electrode in solid oxide fuel cells , 1995 .

[170]  Raymond J. Gorte,et al.  Ceria-Based Anodes for the Direct Oxidation of Methane in Solid Oxide Fuel Cells , 1995 .

[171]  M. Watanabe,et al.  Effects of ionic conductivities of zirconia electrolytes on polarization properties of platinum anodes in solid oxide fuel cells , 1995 .

[172]  Z. Ogumi,et al.  Novel Method for Preparing Nickel/YSZ Cermet by a Vapor-Phase Process , 1995 .

[173]  G. Balazs ac impedance studies of rare earth oxide doped ceria , 1995 .

[174]  E. Riensche,et al.  Methane/steam reforming kinetics for solid oxide fuel cells , 1994 .

[175]  S. Badwal,et al.  Evaluation of commercial zirconia powders forsolid oxide fuel cells , 1994 .

[176]  J. Irvine,et al.  Reduced magnesium titanate electrodes for solid oxide fuel cells , 1994 .

[177]  Mogens Bjerg Mogensen,et al.  Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2 , 1994 .

[178]  Motoaki Tajika,et al.  Kinetics of the electrode reaction at the H[sub 2]-H[sub 2]O porous Pt/stabilized zirconia interface , 1994 .

[179]  M. Ippommatsu,et al.  High power density solid oxide electrolyte fuel cells using Ru/Y2O3 stabilized zirconia cermet anodes , 1993 .

[180]  S. Barnett,et al.  Sputter-deposited medium-temperature solid oxide fuel cells with multi-layer electrolytes , 1993 .

[181]  N. Minh Ceramic Fuel Cells , 1993 .

[182]  I. Metcalfe,et al.  Hydrocarbon activation in solid state electrochemical cells , 1992 .

[183]  Koichi Eguchi,et al.  Effects of Anode Material and Fuel on Anodic Reaction of Solid Oxide Fuel Cells , 1992 .

[184]  H. Naito Electrical properties of ZrO2$z.sbnd;TiO2$z.sbnd;Y2O3 system , 1992 .

[185]  T. Ishihara,et al.  Preparation of Yttria-Stabilized Zirconia Films for Solid Oxide Fuel Cells by Electrophoretic Deposition Method. , 1992 .

[186]  W. L. Worell,et al.  Electrical properties of mixed-conducting oxides having high oxygen-ion conductivity , 1992 .

[187]  N. Sakai,et al.  Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials , 1992 .

[188]  Masashi Mori,et al.  Characteristics of Slurry‐Coated Nickel Zirconia Cermet Anodes for Solid Oxide Fuel Cells , 1990 .

[189]  S. C. Singhal,et al.  Electrochemical Vapor Deposition of Yttria‐Stabilized Zirconia Films , 1990 .

[190]  R. Zabransky,et al.  Internal reforming development for solid oxide fuel cells , 1990 .

[191]  D. Dees,et al.  Conductivity of porous Ni/ZrO/sub 2/-Y/sub 2/O/sub 3/ cermets , 1987 .

[192]  D. P. Fagg,et al.  Electrochemical behaviour and degradation of (Ni,M)/YSZ cermet electrodes (M=Co,Cu,Fe) for high temperature applications of solid electrolytes , 2004 .

[193]  L. Gauckler,et al.  State-space modeling of the anodic SOFC system Ni, H2–H2O∣YSZ , 2002 .

[194]  J. Irvine,et al.  Study on the structural and electrical properties of the double perovskite oxide SrMn0.5Nb0.5O3−δ , 2002 .

[195]  R. Vaßen,et al.  Modelling of the agglomeration of Ni-particles in anodes of solid oxide fuel cells , 2001 .

[196]  E. Ivers-Tiffée,et al.  Materials and technologies for SOFC-components , 2001 .

[197]  P. Larsen,et al.  Sr-Doped LaCrO3 Anode for Solid Oxide Fuel Cells , 2001 .

[198]  J. Jamnik,et al.  Electrical and microstructural investigations of cermet anode/YSZ thin film systems , 2001 .

[199]  Meilin Liu,et al.  Preparation of mesoporous yttria-stabilized zirconia (YSZ) and YSZ–NiO using a triblock copolymer as surfactant , 2000 .

[200]  S. Singhal,et al.  Polarization Effects in Intermediate Temperature, Anode‐Supported Solid Oxide Fuel Cells , 1999 .

[201]  Elisabetta Arato,et al.  Some more considerations on the optimization of cermet solid oxide fuel cell electrodes , 1998 .

[202]  V. Antonucci,et al.  Ageing effects of electrodes in ceramic fuel cells , 1998 .

[203]  V. Antonucci,et al.  Micro-modelling of solid oxide fuel cell electrodes , 1998 .

[204]  S. Jiang,et al.  Chemical interactions between strontium-doped praseodymium manganite and 3 mol% yttria-zirconia , 1998 .

[205]  A. Selçuk,et al.  Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC) , 1997 .

[206]  S. Linderoth,et al.  Interaction of NiO with yttria-stabilized zirconia , 1997 .

[207]  Kuan-Zong Fung,et al.  The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance I. Theoretical Analysis , 1997 .

[208]  Y. Ikuhara,et al.  Synthesis of (La,Sr)MnO3–YSZ Composite Particles by Spray Pyrolysis , 1997 .

[209]  S. Yamaguchi,et al.  Electronic conductivity measurements of 5 mol% TiO2-doped YSZ by a d.c.-polarization technique , 1997 .

[210]  J. Carberry,et al.  Surface characterization and catalytic properties of perovskite type solid oxide solutions, La0.8Sr0.2BO3 (B = Cr, Mn, Fe, Co or Y) , 1996 .

[211]  N. Sammes,et al.  Wet powder spraying of a cermet anode for a planar solid oxide fuel cell system , 1994 .

[212]  R. Millini,et al.  Physico-chemical characterization of NiO/YSZ powders prepared by the citrate route , 1994, Journal of Materials Science.

[213]  W. J. Dollard Solid oxide fuel cell developments at Westinghouse , 1992 .