Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response.

[1]  D. Zeevi,et al.  Different modes of spacer acquisition by the Staphylococcus epidermidis type III-A CRISPR-Cas system , 2022, Nucleic acids research.

[2]  J. Doudna,et al.  A CRISPR-Cas9–integrase complex generates precise DNA fragments for genome integration , 2021, Nucleic acids research.

[3]  Joshua W. Modell,et al.  A natural single-guide RNA repurposes Cas9 to autoregulate CRISPR-Cas expression , 2020, bioRxiv.

[4]  Nora C. Pyenson,et al.  Co-evolution within structured bacterial communities results in multiple expansion of CRISPR loci and enhanced immunity , 2020, eLife.

[5]  Stan J. J. Brouns,et al.  Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants , 2019, Nature Reviews Microbiology.

[6]  R. Sorek,et al.  The pan-immune system of bacteria: antiviral defence as a community resource , 2019, Nature Reviews Microbiology.

[7]  L. Marraffini,et al.  Cas9 Cleavage of Viral Genomes Primes the Acquisition of New Immunological Memories. , 2019, Cell host & microbe.

[8]  J. Doudna,et al.  Spacer Acquisition Rates Determine the Immunological Diversity of the Type II CRISPR-Cas Immune Response. , 2019, Cell host & microbe.

[9]  Kaitlyn Gayvert,et al.  Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape. , 2017, Cell host & microbe.

[10]  A. Ke,et al.  How Type II CRISPR-Cas establish immunity through Cas1-Cas2 mediated spacer integration , 2017, Nature.

[11]  A. Marina,et al.  Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus , 2017, Nucleic acids research.

[12]  Luciano A. Marraffini,et al.  CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity , 2017, Nature.

[13]  J. Doudna,et al.  Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response. , 2017, Molecular cell.

[14]  A. Buckling,et al.  The diversity-generating benefits of a prokaryotic adaptive immune system , 2016, Nature.

[15]  Asaf Levy,et al.  CRISPR adaptation biases explain preference for acquisition of foreign DNA , 2015, Nature.

[16]  Luciano A. Marraffini,et al.  Cas9 specifies functional viral targets during CRISPR-Cas adaptation , 2015, Nature.

[17]  Richard J. Roberts,et al.  REBASE—a database for DNA restriction and modification: enzymes, genes and genomes , 2009, Nucleic Acids Res..

[18]  Chad W. Euler,et al.  Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases , 2016 .

[19]  M. Touchon,et al.  The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts , 2014, Nucleic acids research.

[20]  S. Moineau,et al.  Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages , 2014, Nature Communications.

[21]  Luciano A. Marraffini,et al.  Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting , 2014, Nature.

[22]  David T. F. Dryden,et al.  Type I restriction enzymes and their relatives , 2013, Nucleic acids research.

[23]  Bruce R. Levin,et al.  Dealing with the Evolutionary Downside of CRISPR Immunity: Bacteria and Beneficial Plasmids , 2013, PLoS genetics.

[24]  Sylvain Moineau,et al.  Revenge of the phages: defeating bacterial defences , 2013, Nature Reviews Microbiology.

[25]  S. Moineau,et al.  CRISPR-Cas and restriction–modification systems are compatible and increase phage resistance , 2013, Nature Communications.

[26]  John H. White,et al.  Impact of target site distribution for Type I restriction enzymes on the evolution of methicillin-resistant Staphylococcus aureus (MRSA) populations , 2013, Nucleic acids research.

[27]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[28]  D. Wigley Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB , 2012, Nature Reviews Microbiology.

[29]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[30]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[31]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[32]  Stan J. J. Brouns,et al.  Evolution and classification of the CRISPR–Cas systems , 2011, Nature Reviews Microbiology.

[33]  Albert J R Heck,et al.  Structural basis for CRISPR RNA-guided DNA recognition by Cascade , 2011, Nature Structural &Molecular Biology.

[34]  Dhanalakshmi R. Nair,et al.  Whole-Genome Sequencing of Staphylococcus aureus Strain RN4220, a Key Laboratory Strain Used in Virulence Research, Identifies Mutations That Affect Not Only Virulence Factors but Also the Fitness of the Strain , 2011, Journal of bacteriology.

[35]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[36]  B. Graveley,et al.  RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex , 2009, Cell.

[37]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[38]  Ruslan Medzhitov,et al.  Pattern recognition receptors and control of adaptive immunity , 2009, Immunological reviews.

[39]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[40]  Philippe Horvath,et al.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus , 2007, Journal of bacteriology.

[41]  S. Schbath,et al.  Identification of DNA Motifs Implicated in Maintenance of Bacterial Core Genomes by Predictive Modeling , 2007, PLoS genetics.

[42]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[43]  O. Schneewind,et al.  Prophages of Staphylococcus aureus Newman and their contribution to virulence , 2006, Molecular microbiology.

[44]  Denise E. Waldron,et al.  Sau1: a Novel Lineage-Specific Type I Restriction-Modification System That Blocks Horizontal Gene Transfer into Staphylococcus aureus and between S. aureus Isolates of Different Lineages , 2006, Journal of bacteriology.

[45]  Alexander Bolotin,et al.  Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. , 2005, Microbiology.

[46]  D. Dryden,et al.  The biology of restriction and anti-restriction. , 2005, Current opinion in microbiology.

[47]  G. Vergnaud,et al.  CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. , 2005, Microbiology.

[48]  A. Pingoud,et al.  Type II restriction endonucleases: structure and mechanism , 2005, Cellular and Molecular Life Sciences.

[49]  J. García-Martínez,et al.  Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements , 2005, Journal of Molecular Evolution.

[50]  T. Bickle,et al.  Biology of DNA restriction , 1993 .

[51]  L. E. McDonald,et al.  A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Caparon,et al.  Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems , 1991, Journal of bacteriology.

[53]  B. Dujon,et al.  Recognition and cleavage site of the intron-encoded omega transposase. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. Novick,et al.  Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus. , 1983, Plasmid.

[55]  M. O'Reilly,et al.  The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage , 1983, Nature.

[56]  S. Horinouchi,et al.  Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies , 1982, Journal of bacteriology.

[57]  S. Horinouchi,et al.  Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance , 1982, Journal of bacteriology.

[58]  G. Wilson,et al.  Biochemical and genetic properties of site-specific restriction endonucleases in Bacillus globigii , 1978, Journal of bacteriology.

[59]  V. Simmon,et al.  Degradation of Bacteriophage Lambda Deoxyribonucleic Acid After Restriction by Escherichia coli K-12 , 1972, Journal of bacteriology.

[60]  A. D. Hershey,et al.  COHESION OF DNA MOLECULES ISOLATED FROM PHAGE LAMBDA. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Peer Review File Manuscript Title: DNA targeting and interference by a bacterial Argonaute nuclease , 2020 .

[62]  S. Casjens,et al.  Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. , 2009, Methods in molecular biology.