A Note on Simple Termination of Infinite Term Rewriting Systems

[1]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[2]  J. Kruskal Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .

[3]  C. Nash-Williams On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[5]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[6]  Stéphane Kaplan,et al.  Simplifying Conditional Term Rewriting Systems: Unification, Termination and Confluence , 1987, J. Symb. Comput..

[7]  Yoshihito Toyama,et al.  Counterexamples to Termination for the Direct Sum of Term Rewriting Systems , 1987, Inf. Process. Lett..

[8]  Yoshihito Toyama,et al.  On the Church-Rosser property for the direct sum of term rewriting systems , 1984, JACM.

[9]  Aart Middeldorp Modular Aspects of Properties of Term Rewriting Systems Related to Normal Forms , 1989, RTA.

[10]  Azuma Ohuchi,et al.  30周年記念論文 佳作:Modularity of Simple Termination of Term Rewriting Systems , 1990 .

[11]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[12]  Hong Chen,et al.  On Finite Representations of Infinite Sequences of Terms , 1990, CTRS.

[13]  Hong Chen,et al.  Logic Programming with Recurrence Domains , 1991, ICALP.

[14]  Jean H. Gallier,et al.  What's So Special About Kruskal's Theorem and the Ordinal Gamma0? A Survey of Some Results in Proof Theory , 1991, Ann. Pure Appl. Log..

[15]  Hans Zantema,et al.  Termination of Term Rewriting by Interpretation , 1992, CTRS.

[16]  Enno Ohlebusch,et al.  Combinations of Simplifying Conditional Term Rewriting Systems , 1992, CTRS.

[17]  Bernhard Gramlich Generalized Sufficient Conditions for Modular Termination of Rewriting , 1992, ALP.

[18]  Jan Willem Klop,et al.  Term Rewriting Systems: From Church-Rosser to Knuth-Bendix and Beyond , 1990, ICALP.