Optimal attentional modulation of a neural population

Top-down attention has often been separately studied in the contexts of either optimal population coding or biasing of visual search. Yet, both are intimately linked, as they entail optimally modulating sensory variables in neural populations according to top-down goals. Designing experiments to probe top-down attentional modulation is difficult because non-linear population dynamics are hard to predict in the absence of a concise theoretical framework. Here, we describe a unified framework that encompasses both contexts. Our work sheds light onto the ongoing debate on whether attention modulates neural response gain, tuning width, and/or preferred feature. We evaluate the framework by conducting simulations for two tasks: (1) classification (discrimination) of two stimuli sa and sb and (2) searching for a target T among distractors D. Results demonstrate that all of gain, tuning, and preferred feature modulation happen to different extents, depending on stimulus conditions and task demands. The theoretical analysis shows that task difficulty (linked to difference Δ between sa and sb, or T, and D) is a crucial factor in optimal modulation, with different effects in discrimination vs. search. Further, our framework allows us to quantify the relative utility of neural parameters. In easy tasks (when Δ is large compared to the density of the neural population), modulating gains and preferred features is sufficient to yield nearly optimal performance; however, in difficult tasks (smaller Δ), modulating tuning width becomes necessary to improve performance. This suggests that the conflicting reports from different experimental studies may be due to differences in tasks and in their difficulties. We further propose future electrophysiology experiments to observe different types of attentional modulation in a same neuron.

[1]  D. Spalding The Principles of Psychology , 1873, Nature.

[2]  W. James,et al.  The Principles of Psychology. , 1983 .

[3]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[4]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[5]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[6]  L. Festinger EYE MOVEMENTS AND PERCEPTION , 1971 .

[7]  B. Bergum,et al.  Attention and Performance VI , 1978 .

[8]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[9]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[10]  D. Robinson,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. , 1981, Journal of neurophysiology.

[11]  J. Duncan Selective attention and the organization of visual information. , 1984, Journal of experimental psychology. General.

[12]  F. Crick Function of the thalamic reticular complex: the searchlight hypothesis. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[14]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[15]  H. Spitzer,et al.  Increased attention enhances both behavioral and neuronal performance. , 1988, Science.

[16]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[17]  Susan L. Franzel,et al.  Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.

[18]  M Corbetta,et al.  Attentional modulation of neural processing of shape, color, and velocity in humans. , 1990, Science.

[19]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[20]  D Guitton,et al.  Movement of neural activity on the superior colliculus motor map during gaze shifts. , 1991, Science.

[21]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[22]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[23]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[24]  P. Cavanagh,et al.  Attentional resolution and the locus of visual awareness , 1996, Nature.

[25]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[26]  J. Duncan Cooperating brain systems in selective perception and action. , 1996 .

[27]  D. V. van Essen,et al.  Responses in area V4 depend on the spatial relationship between stimulus and attention. , 1996, Journal of neurophysiology.

[28]  A. Treisman,et al.  Voluntary Attention Modulates fMRI Activity in Human MT–MST , 1997, Neuron.

[29]  E. DeYoe,et al.  Graded effects of spatial and featural attention on human area MT and associated motion processing areas. , 1997, Journal of neurophysiology.

[30]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[31]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[32]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[33]  R. Desimone,et al.  Responses of Neurons in Inferior Temporal Cortex during Memory- Guided Visual Search , 1998 .

[34]  Pieter R. Roelfsema,et al.  Object-based attention in the primary visual cortex of the macaque monkey , 1998, Nature.

[35]  S. Miyauchi,et al.  Attention-regulated activity in human primary visual cortex. , 1998, Journal of neurophysiology.

[36]  Marisa Carrasco,et al.  Attention improves or impairs visual performance by enhancing spatial resolution , 1998, Nature.

[37]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[38]  B. Dosher,et al.  External noise distinguishes attention mechanisms , 1998, Vision Research.

[39]  Terrence J. Sejnowski,et al.  Neuronal Tuning: To Sharpen or Broaden? , 1999, Neural Computation.

[40]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[41]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[42]  Peter E. Latham,et al.  Narrow Versus Wide Tuning Curves: What's Best for a Population Code? , 1999, Neural Computation.

[43]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[44]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[45]  Alexandre Pouget,et al.  Narrow vs Wide Tuning Curves: What's Best for a Population Code? , 1999, Neural Comput..

[46]  S. Hillyard,et al.  Involvement of striate and extrastriate visual cortical areas in spatial attention , 1999, Nature Neuroscience.

[47]  C. Koch,et al.  Attention activates winner-take-all competition among visual filters , 1999, Nature Neuroscience.

[48]  Karl J. Friston,et al.  The physiological basis of attentional modulation in extrastriate visual areas , 1999, Nature Neuroscience.

[49]  D. Heeger,et al.  Task-related modulation of visual cortex. , 2000, Journal of neurophysiology.

[50]  N. Kanwisher,et al.  Visual attention: Insights from brain imaging , 2000, Nature Reviews Neuroscience.

[51]  M. Carrasco,et al.  Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement , 2000, Vision Research.

[52]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[53]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[54]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[55]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[56]  D. E. Irwin Eye Movements and Perception , 2001 .

[57]  P. Verghese Visual Search and Attention A Signal Detection Theory Approach , 2001, Neuron.

[58]  B McElree,et al.  Covert attention accelerates the rate of visual information processing , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[60]  S. Treue,et al.  Attentional Modulation Strength in Cortical Area MT Depends on Stimulus Contrast , 2002, Neuron.

[61]  G. Boynton,et al.  Global effects of feature-based attention in human visual cortex , 2002, Nature Neuroscience.

[62]  N. P. Bichot,et al.  Priming in Macaque Frontal Cortex during Popout Visual Search: Feature-Based Facilitation and Location-Based Inhibition of Return , 2002, The Journal of Neuroscience.

[63]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[64]  M. Goldberg,et al.  The role of the parietal cortex in the neural processing of saccadic eye movements. , 2003, Advances in neurology.

[65]  G. Boynton,et al.  Global feature-based attention for motion and color , 2003, Vision Research.

[66]  J. Reynolds,et al.  Exogenously cued attention triggers competitive selection of surfaces , 2003, Vision Research.

[67]  S. Treue,et al.  Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual Cortex , 2004, Current Biology.

[68]  J. Maunsell,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[69]  A. Pouget,et al.  Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations , 2004, Nature Neuroscience.

[70]  T. Moore,et al.  Microstimulation of the frontal eye field and its effects on covert spatial attention. , 2004, Journal of neurophysiology.

[71]  P. H. Schiller,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[72]  John K. Tsotsos On the relative complexity of active vs. passive visual search , 2004, International Journal of Computer Vision.

[73]  M. Carrasco,et al.  Attention alters appearance , 2004, Nature Neuroscience.

[74]  D. Ballard,et al.  Eye movements in natural behavior , 2005, Trends in Cognitive Sciences.

[75]  S. C. Chong,et al.  Cross-feature spread of global attentional modulation in human area MT+ , 2005, Neuroreport.

[76]  Preeti Verghese,et al.  Attention to locations and features: different top-down modulation of detector weights. , 2005, Journal of vision.

[77]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[78]  John H. R. Maunsell,et al.  Effects of spatial attention on contrast response functions in macaque area V4. , 2006, Journal of neurophysiology.

[79]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[80]  Anthony J. Movshon,et al.  Optimal representation of sensory information by neural populations , 2006, Nature Neuroscience.

[81]  John H. R. Maunsell,et al.  Feature-based attention in visual cortex , 2006, Trends in Neurosciences.

[82]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[83]  M. Carrasco,et al.  Attention alters the appearance of motion coherence , 2006, Psychonomic bulletin & review.

[84]  T. Womelsdorf,et al.  Dynamic shifts of visual receptive fields in cortical area MT by spatial attention , 2006, Nature Neuroscience.

[85]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[86]  M. Woldorff,et al.  Selective attention and audiovisual integration: is attending to both modalities a prerequisite for early integration? , 2006, Cerebral cortex.

[87]  L. Itti,et al.  Search Goal Tunes Visual Features Optimally , 2007, Neuron.

[88]  T. Womelsdorf,et al.  The role of neuronal synchronization in selective attention , 2007, Current Opinion in Neurobiology.

[89]  G. Boynton,et al.  Feature-Based Attentional Modulations in the Absence of Direct Visual Stimulation , 2007, Neuron.

[90]  J. Gallant,et al.  Attention to Stimulus Features Shifts Spectral Tuning of V4 Neurons during Natural Vision , 2008, Neuron.

[91]  S. Martinez-Conde,et al.  Attention and awareness in stage magic: turning tricks into research , 2008, Nature Reviews Neuroscience.

[92]  T. Womelsdorf,et al.  Receptive Field Shift and Shrinkage in Macaque Middle Temporal Area through Attentional Gain Modulation , 2008, The Journal of Neuroscience.

[93]  M. Carrasco,et al.  How spatial and feature-based attention affect the gain and tuning of population responses , 2009, Vision Research.

[94]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[95]  G. Boynton A framework for describing the effects of attention on visual responses , 2009, Vision Research.

[96]  J. Serences,et al.  Adaptive Allocation of Attentional Gain , 2009, The Journal of Neuroscience.

[97]  Matthew F. Peterson,et al.  Statistical decision theory to relate neurons to behavior in the study of covert visual attention , 2009, Vision Research.

[98]  L. Itti,et al.  Training Top-Down Attention Improves Performance on a Triple-Conjunction Search Task , 2010, PloS one.

[99]  J. Serences,et al.  Basing perceptual decisions on the most informative sensory neurons. , 2010, Journal of neurophysiology.

[100]  J. Serences,et al.  Spatial attention improves the quality of population codes in human visual cortex. , 2010, Journal of neurophysiology.

[101]  M. Carrasco Visual attention: The past 25 years , 2011, Vision Research.

[102]  Kerry Hourigan,et al.  Wake transition of a rolling sphere , 2011, J. Vis..

[103]  Alexander C. Schütz,et al.  Eye movements and perception: a selective review. , 2011, Journal of vision.

[104]  Miguel P Eckstein,et al.  Visual search: a retrospective. , 2011, Journal of vision.

[105]  Janneke F. M. Jehee,et al.  Attention Improves Encoding of Task-Relevant Features in the Human Visual Cortex , 2011, The Journal of Neuroscience.

[106]  Alexander S. Ecker,et al.  Reassessing optimal neural population codes with neurometric functions , 2011, Proceedings of the National Academy of Sciences.

[107]  K. Nakayama,et al.  Situating visual search , 2011, Vision Research.

[108]  Eileen Kowler Eye movements: The past 25years , 2011, Vision Research.

[109]  D. Ballard,et al.  Eye guidance in natural vision: reinterpreting salience. , 2011, Journal of vision.

[110]  A. Pouget,et al.  Perceptual learning as improved probabilistic inference in early sensory areas , 2011, Nature Neuroscience.

[111]  L. Itti,et al.  Mechanisms of top-down attention , 2011, Trends in Neurosciences.

[112]  Thomas Serre,et al.  Object decoding with attention in inferior temporal cortex , 2011, Proceedings of the National Academy of Sciences.

[113]  Zhe Chen Object-based attention: A tutorial review , 2012, Attention, Perception, & Psychophysics.

[114]  J. Serences,et al.  Optimal Deployment of Attentional Gain during Fine Discriminations , 2012, The Journal of Neuroscience.

[115]  Alex R. Wade,et al.  Attention Selects Informative Neural Populations in Human V1 , 2012, The Journal of Neuroscience.

[116]  Zhuo Wang,et al.  "Optimal Neural Tuning Curves for Arbitrary Stimulus Distributions: Discrimax, Infomax and Minimum $L_p$ Loss" , 2012, NIPS.

[117]  Anna E. Ipata,et al.  Feature attention evokes task-specific pattern selectivity in V4 neurons , 2012, Proceedings of the National Academy of Sciences.

[118]  Ali Borji,et al.  State-of-the-Art in Visual Attention Modeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[119]  M. Carrasco Spatial Covert Attention , 2014 .

[120]  L. Itti,et al.  Defending Yarbus: eye movements reveal observers' task. , 2014, Journal of vision.

[121]  F. Tong,et al.  Neural mechanisms of object-based attention. , 2015, Cerebral cortex.