Detailed investigation on high temperature mechanical properties of AA2050 Al–Cu–Li alloys

[1]  J. Pang,et al.  Effect of temperature on the mechanical properties of Al–Si–Cu–Mg–Ni–Ce alloy , 2021 .

[2]  J. Ning,et al.  Hot tensile deformation behavior and microstructural evolution of 2195 Al–Li alloy , 2021, Vacuum.

[3]  H. Liao,et al.  Joint effect of micro-sized Si particles and nano-sized dispersoids on the flow behavior and dynamic recrystallization of near-eutectic Al–Si based alloys during hot compression , 2021 .

[4]  L. Allard,et al.  Aging behavior and strengthening mechanisms of coarsening resistant metastable θ' precipitates in an Al–Cu alloy , 2021 .

[5]  Shichao Liu,et al.  Study on anisotropy of Al-Zn-Mg-Sc-Zr alloy sheet , 2021 .

[6]  J. Ning,et al.  The mechanical response and microstructural evolution of 2195 Al–Li alloy during hot tensile deformation , 2020 .

[7]  M. Wahab,et al.  Enhanced Brass texture of hot-rolled Al-4Cu-1.6Mg alloy by 0.1% Zr addition , 2020 .

[8]  Z. Horita,et al.  Aging behavior of Al-Li-(Cu, Mg) alloys processed by different deformation methods , 2020 .

[9]  Yun-lai Deng,et al.  Effect of asymmetric rolling and subsequent ageing on the microstructure, texture and mechanical properties of the Al-Cu-Li alloy , 2020 .

[10]  Yunlong Ma,et al.  Precipitate microstructures, mechanical properties and corrosion resistance of Al-1.0 wt%Cu-2.5 wt%Li alloys with different micro-alloyed elements addition , 2020 .

[11]  Shichao Liu,et al.  High temperature mechanical properties and microstructure of die forged Al−5.87Zn−2.07Mg−2.42Cu alloy , 2020, Transactions of Nonferrous Metals Society of China.

[12]  Xiaopeng Liang,et al.  Effect of different aging treatment on high temperature properties of die-forged Al-5.87Zn-2.07Mg-2.42Cu alloy , 2020, Materials Characterization.

[13]  Christopher D. Taylor,et al.  Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys , 2020 .

[14]  Yan-qing Yang,et al.  High temperature tensile properties, fracture behaviors and nanoscale precipitate variation of an Al–Zn–Mg–Cu alloy , 2020 .

[15]  Z. Yin,et al.  Influence of equal channel angular pressing on the evolution of microstructures, aging behavior and mechanical properties of as-quenched Al-6.6Zn-1.25Mg alloy , 2019, Materials Characterization.

[16]  H. Hou,et al.  Microstructural evolution and superplastic deformation mechanisms of as-rolled 2A97 alloy at low-temperature , 2019, Materials Science and Engineering: A.

[17]  Weiweng Zhang,et al.  Developing high performance mechanical properties at elevated temperature in squeeze cast Al-Cu-Mn-Fe-Ni alloys , 2019, Materials Characterization.

[18]  Duncan N. Johnstone,et al.  Crystallographic relationships of T-/S-phase aggregates in an Al–Cu–Mg–Ag alloy , 2019, Acta Materialia.

[19]  F. Shen,et al.  Effect of aging time on the microstructure evolution and mechanical property in an Al-Cu-Li alloy sheet , 2019, Materials Science and Engineering: A.

[20]  B. Skrotzki,et al.  Thickening of T1 Precipitates during Aging of a High Purity Al–4Cu–1Li–0.25Mn Alloy , 2018, Materials.

[21]  P. Xia,et al.  Coincidence site lattice boundary mechanism for the preferred growth of Goss and Cube grains during annealing in an Al-Cu-Mg alloy , 2018, Materials Characterization.

[22]  Guoqun Zhao,et al.  Microstructures and mechanical properties of spray deposited 2195 Al-Cu-Li alloy through thermo-mechanical processing , 2018, Materials Science and Engineering: A.

[23]  Fei Liu,et al.  Analysis of empirical relation between microstructure, texture evolution and fatigue properties of an Al-Cu-Li alloy during different pre-deformation processes , 2018 .

[24]  N. Hansen,et al.  The microstructural origin of work hardening stages , 2018 .

[25]  A. Morri,et al.  Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al-7Si-0.4Mg alloy modified with 0.25%Er , 2018 .

[26]  You-ping Yi,et al.  Effects of deformation temperature on second-phase particles and mechanical properties of 2219 Al-Cu alloy , 2018 .

[27]  M. Shunmugam,et al.  Insight into the microstructural evolution during cryo-severe plastic deformation and post-deformation annealing of aluminum and its alloys , 2017 .

[28]  L. Ceschini,et al.  Effects of overaging on microstructure and tensile properties of the 2055 Al-Cu-Li-Ag alloy , 2017 .

[29]  N. Nayan,et al.  Effect of temperature and strain rate on hot deformation behavior and microstructure of Al-Cu-Li alloy , 2017 .

[30]  M. Yadava,et al.  A modified Taylor model for predicting yield strength anisotropy in age hardenable aluminium alloys , 2017 .

[31]  L. Ceschini,et al.  Thermal stability of the lightweight 2099 Al-Cu-Li alloy: Tensile tests and microstructural investigations after overaging , 2017 .

[32]  Zhilin Liu,et al.  Effects of uniaxial creep ageing on the mechanical properties and micro precipitates of Al-Li-S4 alloy , 2017 .

[33]  Yue Ma,et al.  Microstructural evolution and mechanical behavior of friction spot welded 2198-T8 Al-Li alloy during aging treatment , 2017 .

[34]  P. Prangnell,et al.  Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al–Cu–Li alloy AA2195 , 2016 .

[35]  Z. Xiliang,et al.  Mechanical properties and corrosion resistance of Al–Cu–Mg–Ag heat-resistant alloy modified by interrupted aging , 2016 .

[36]  T. Dorin,et al.  Size distribution and volume fraction of T(1) phase precipitates from TEM images: Direct measurements and related correction. , 2015, Micron.

[37]  N. Schell,et al.  Dislocation density evolution of AA 7020-T6 investigated by in-situ synchrotron diffraction under tensile load , 2015 .

[38]  Chen Yulong,et al.  Microstructure evolution of 7050 Al alloy during age-forming , 2015 .

[39]  P. Houtte,et al.  Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification , 2015 .

[40]  J. Svoboda,et al.  Generalization of the Lifshitz–Slyozov–Wagner coarsening theory to non-dilute multi-component systems , 2014 .

[41]  T. Dorin,et al.  Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy , 2014 .

[42]  Y. Lin,et al.  Hot tensile deformation behaviors and constitutive model of an Al–Zn–Mg–Cu alloy , 2014 .

[43]  T. Dorin,et al.  Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al-Cu-Li alloy , 2014 .

[44]  T. Dorin,et al.  Quantitative description of the T1 formation kinetics in an Al–Cu–Li alloy using differential scanning calorimetry, small-angle X-ray scattering and transmission electron microscopy , 2014 .

[45]  N. Nayan,et al.  Processing and characterization of Al–Cu–Li alloy AA2195 undergoing scale up production through the vacuum induction melting technique , 2013 .

[46]  T. Dorin,et al.  The influence of precipitation on plastic deformation of Al-Cu-Li alloys , 2013 .

[47]  A. Deschamps,et al.  The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys , 2013 .

[48]  Guillaume Fribourg,et al.  In situ evaluation of dynamic precipitation during plastic straining of an Al–Zn–Mg–Cu alloy , 2012 .

[49]  E. A. Starke,et al.  The Effect of Inhomogeneous Plastic Deformation on the Ductility and Fracture Behavior of Age Hardenable Aluminum Alloys , 2005 .

[50]  T. Ungár Microstructural parameters from X-ray diffraction peak broadening , 2004 .

[51]  M. Starink,et al.  A Model for the Yield Strength of Overaged Al-Zn-Mg-Cu Alloys , 2003 .

[52]  R Madec,et al.  From dislocation junctions to forest hardening. , 2002, Physical review letters.

[53]  A. Borbely,et al.  The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice , 1999 .

[54]  P. S. Chen,et al.  The effects of artificial aging on the microstructure and fracture toughness of Al-Cu-Li alloy 2195 , 1998 .

[55]  E. Starke,et al.  Grain-boundary precipitation and fracture behavior of an Al-Cu-Li-Mg-Ag alloy , 1995 .

[56]  E. A. Starke,et al.  Predicting slip behavior in alloys containing shearable and strong particles , 1993 .

[57]  A. Vasudévan,et al.  Grain boundary ductile fracture in precipitation hardened aluminum alloys , 1987 .

[58]  H. Aaronson,et al.  The volume free energy change associated with precipitate nucleation , 1970 .

[59]  M. Yadava,et al.  Microstructure and tensile response of friction stir welded Al–Cu–Li (AA2198-T8) alloy , 2020 .