Fully Automatic Multiresolution Idealization for Filtered Ion Channel Recordings: Flickering Event Detection

We propose a new model-free segmentation method, JULES, which combines recent statistical multiresolution techniques with local deconvolution for idealization of ion channel recordings. The multiresolution criterion takes into account scales down to the sampling rate enabling the detection of flickering events, i.e., events on small temporal scales, even below the filter frequency. For such small scales the deconvolution step allows for a precise determination of dwell times and, in particular, of amplitude levels, a task which is not possible with common thresholding methods. This is confirmed theoretically and in a comprehensive simulation study. In addition, JULES can be applied as a preprocessing method for a refined hidden Markov analysis. Our new methodology allows us to show that gramicidin A flickering events have the same amplitude as the slow gating events. JULES is available as an R function jules in the package clampSeg.

[1]  M. Winterhalter,et al.  Antibiotic permeation across the OmpF channel: modulation of the affinity site in the presence of magnesium. , 2012, The journal of physical chemistry. B.

[2]  A. Benveniste,et al.  Desgin and comparative study of some sequential jump detection algorithms for digital signals , 1983 .

[3]  Benjamin Yakir,et al.  Tail probabilities for the null distribution of scanning statistics , 1998 .

[4]  Paul Fearnhead,et al.  On optimal multiple changepoint algorithms for large data , 2014, Statistics and Computing.

[5]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[6]  D. S. Dimitrov,et al.  A mechanism of liposome electroformation , 1988 .

[7]  Peter Hänggi,et al.  Non-Markovian stochastic resonance: three-state model of ion channel gating. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  F. G. Ball,et al.  Stochastic models for ion channels: introduction and bibliography. , 1992, Mathematical biosciences.

[9]  Roman Kuc,et al.  Identification of hidden Markov models for ion channel currents. I. Colored background noise , 1998, IEEE Trans. Signal Process..

[10]  T. Hohage,et al.  ASYMPTOTIC LAWS FOR CHANGE POINT ESTIMATION IN INVERSE REGRESSION , 2014 .

[11]  F Sachs,et al.  Hidden Markov modeling for single channel kinetics with filtering and correlated noise. , 2000, Biophysical journal.

[12]  R A Levis,et al.  The use of quartz patch pipettes for low noise single channel recording. , 1993, Biophysical journal.

[13]  A Ring,et al.  Brief closures of gramicidin A channels in lipid bilayer membranes. , 1986, Biochimica et biophysica acta.

[14]  G. Psakis,et al.  Structure-based engineering of a minimal porin reveals loop-independent channel closure. , 2014, Biochemistry.

[15]  K. M. Armstrong,et al.  On the origin of closing flickers in gramicidin channels: a new hypothesis. , 2002, Biophysical journal.

[16]  Edmund J Crampin,et al.  MCMC estimation of Markov models for ion channels. , 2011, Biophysical journal.

[17]  L. Duembgen,et al.  Multiscale inference about a density , 2007, 0706.3968.

[18]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .

[19]  Xiaowei Niu,et al.  Coupling and cooperativity in voltage activation of a limited-state BK channel gating in saturating Ca2+ , 2010, The Journal of general physiology.

[20]  V. Liebscher,et al.  Consistencies and rates of convergence of jump-penalized least squares estimators , 2009, 0902.4838.

[21]  A. Munk,et al.  Jump estimation in inverse regression , 2008, 0803.2119.

[22]  Zbigniew J. Grzywna,et al.  NON-MARKOVIAN CHARACTER OF IONIC CURRENT FLUCTUATIONS IN MEMBRANE CHANNELS , 1998 .

[23]  A. Munk,et al.  Multiscale change point inference , 2013, 1301.7212.

[24]  K. Weron,et al.  Stochastic origins of the long-range correlations of ionic current fluctuations in membrane channels. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Roman Kuc,et al.  Identification of hidden Markov models for ion channel currents. II. State-dependent excess noise , 1998, IEEE Trans. Signal Process..

[26]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[27]  Axel Munk,et al.  Autocovariance Estimation in Regression with a Discontinuous Signal and m‐Dependent Errors: A Difference‐Based Approach , 2015, 1507.02485.

[28]  Radhakrishnan Gnanasambandam,et al.  Unsupervised Idealization of Ion Channel Recordings by Minimum Description Length: Application to Human PIEZO1-Channels , 2017, Front. Neuroinform..

[29]  O. Andersen,et al.  Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. , 1990, Science.

[30]  Ben Calderhead,et al.  Bayesian Statistical Inference in Ion-Channel Models with Exact Missed Event Correction. , 2016, Biophysical journal.

[31]  A. Tsybakov,et al.  Optimal change-point estimation from indirect observations , 2004, math/0407396.

[32]  P. Fearnhead,et al.  Optimal detection of changepoints with a linear computational cost , 2011, 1101.1438.

[33]  R. Kass,et al.  The channelopathies: novel insights into molecular and genetic mechanisms of human disease. , 2005, The Journal of clinical investigation.

[34]  Shin-Ho Chung,et al.  Biological membrane ion channels : dynamics, structure, and applications , 2006 .

[35]  I. Schroeder How to resolve microsecond current fluctuations in single ion channels: The power of beta distributions , 2015, Channels.

[36]  A. Munk,et al.  FDR-Control in Multiscale Change-point Segmentation , 2014, 1412.5844.

[37]  F J Sigworth,et al.  Open channel noise. VI. Analysis of amplitude histograms to determine rapid kinetic parameters. , 1991, Biophysical journal.

[38]  Axel Munk,et al.  Heterogeneous change point inference , 2015, 1505.04898.

[39]  Alan G. Hawkes,et al.  The distributions of the apparent open times and shut times in a single channel record when brief events cannot be detected , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[40]  Axel Munk,et al.  Idealizing Ion Channel Recordings by a Jump Segmentation Multiresolution Filter , 2013, IEEE Transactions on NanoBioscience.

[41]  F. Qin,et al.  Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. , 1996, Biophysical journal.

[42]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[43]  V. Spokoiny,et al.  Multiscale testing of qualitative hypotheses , 2001 .

[44]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[45]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[46]  A. Munk,et al.  High-resolution experimental and computational electrophysiology reveals weak β-lactam binding events in the porin PorB , 2018, bioRxiv.

[47]  H. Künsch,et al.  Statistical Analysis of Ion Channel Data Using Hidden Markov Models With Correlated State-Dependent Noise and Filtering , 2001 .

[48]  O. Andersen,et al.  Gramicidin channels. , 2005, Annual review of physiology.

[49]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[50]  A. Munk,et al.  Multiscale change-point segmentation: beyond step functions , 2017, Electronic Journal of Statistics.

[51]  A. VanDongen,et al.  A new algorithm for idealizing single ion channel data containing multiple unknown conductance levels. , 1996, Biophysical journal.

[52]  Y. D. C. O L Q U H O U N,et al.  Joint distributions of apparent open and shut times of single-ion channels and maximum likelihood fitting of mechanisms , 2001 .

[53]  Benoît Roux,et al.  Gramicidin Channels: Versatile Tools , 2007 .

[54]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[55]  B. Sakmann,et al.  Single-Channel Recording , 1983, Springer US.

[56]  Roman Kuc,et al.  Identification of hidden Markov models for ion channel currents .III. Bandlimited, sampled data , 2000, IEEE Trans. Signal Process..

[57]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[58]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[59]  Fred J. Sigworth,et al.  Fitting and Statistical Analysis of Single-Channel Records , 1983 .

[60]  D. Colquhoun,et al.  Practical analysis of single channel records , 1999 .