Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients

[1]  A. Trkola,et al.  Multifactorial seroprofiling dissects the contribution of pre-existing human coronaviruses responses to SARS-CoV-2 immunity , 2021, Nature Communications.

[2]  M. Gazi,et al.  SARS-CoV-2 targets glial cells in human cortical organoids , 2021, Stem Cell Reports.

[3]  A. Trkola,et al.  Multifactorial SARS-CoV-2 seroprofiling dissects interdependencies with human coronaviruses and predicts neutralization activity , 2021, medRxiv.

[4]  J. Knight,et al.  Endothelial cell-activating antibodies in COVID-19 , 2021, medRxiv.

[5]  K. Melmed,et al.  Cerebrospinal fluid in COVID-19: A systematic review of the literature , 2021, Journal of the Neurological Sciences.

[6]  Junlei Chang,et al.  Peripheral inflammation and blood–brain barrier disruption: effects and mechanisms , 2020, CNS neuroscience & therapeutics.

[7]  G. Duan,et al.  Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches , 2020, Signal Transduction and Targeted Therapy.

[8]  C. Conrad,et al.  Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19 , 2020, Nature Neuroscience.

[9]  S. Kremer,et al.  Cerebrospinal Fluid Features in Patients With Coronavirus Disease 2019 and Neurological Manifestations: Correlation with Brain Magnetic Resonance Imaging Findings in 58 Patients , 2020, The Journal of Infectious Diseases.

[10]  S. Jaiswal,et al.  A Comprehensive Systematic Review of CSF analysis that defines Neurological Manifestations of COVID-19 , 2020, International Journal of Infectious Diseases.

[11]  G. Remuzzi,et al.  Immunity, endothelial injury and complement-induced coagulopathy in COVID-19 , 2020, Nature Reviews Nephrology.

[12]  Madeline A. Lancaster,et al.  SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids , 2020, Cell Stem Cell.

[13]  A. Nofal,et al.  Herpes zoster ophthalmicus in COVID‐19 patients , 2020, International journal of dermatology.

[14]  H. Prüss,et al.  Do cross-reactive antibodies cause neuropathology in COVID-19? , 2020, Nature Reviews Immunology.

[15]  Catherine Z. Chen,et al.  Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium , 2020, Cell Stem Cell.

[16]  L. Rony,et al.  A new diagnosis of systemic capillary leak syndrome in a patient with COVID-19 , 2020, Rheumatology.

[17]  F. Paul,et al.  Cerebrospinal fluid findings in patients with myelin oligodendrocyte glycoprotein (MOG) antibodies. Part 2: Results from 108 lumbar punctures in 80 pediatric patients , 2020, Journal of Neuroinflammation.

[18]  F. Paul,et al.  Cerebrospinal fluid findings in patients with myelin oligodendrocyte glycoprotein (MOG) antibodies. Part 1: Results from 163 lumbar punctures in 100 adult patients , 2020, Journal of Neuroinflammation.

[19]  R. Nitrini,et al.  Clinical, cerebrospinal fluid, and neuroimaging findings in COVID-19 encephalopathy: a case series , 2020, Neurological Sciences.

[20]  Lin Wang,et al.  Co‐reactivation of the human herpesvirus alpha subfamily (herpes simplex virus‐1 and varicella zoster virus) in a critically ill patient with COVID‐19 , 2020, The British journal of dermatology.

[21]  K. Domschke,et al.  Increased IL-8 concentrations in the cerebrospinal fluid of patients with unipolar depression. , 2020, Comprehensive psychiatry.

[22]  P. Hantson,et al.  Immune-mediated neurological syndromes in SARS-CoV-2-infected patients , 2020, Journal of Neurology.

[23]  G. Fink,et al.  A systematic review of neurological symptoms and complications of COVID-19 , 2020, Journal of Neurology.

[24]  P. Patel,et al.  COVID-19 Associated With Concomitant Varicella Zoster Viral Encephalitis. , 2020, Neurology. Clinical practice.

[25]  M. Endres,et al.  High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms , 2020, Brain, Behavior, and Immunity.

[26]  P. J. Simpson,et al.  Systemic Capillary Leak Syndrome Secondary to Coronavirus Disease 2019 , 2020, Chest.

[27]  Á. Soriano,et al.  Increased CSF levels of IL-1β, IL-6, and ACE in SARS-CoV-2–associated encephalitis , 2020, Neurology: Neuroimmunology & Neuroinflammation.

[28]  A. Saati,et al.  Herpes Zoster Co-Infection in an Immunocompetent Patient With COVID-19 , 2020, Cureus.

[29]  S. Farhadian,et al.  Neuroinvasive potential of SARS-CoV-2 revealed in a human brain organoid model , 2020 .

[30]  A. Pileri,et al.  Herpes zoster in COVID‐19‐positive patients , 2020, International journal of dermatology.

[31]  B. Lina,et al.  Systematic SARS-CoV-2 screening in cerebrospinal fluid during the COVID-19 pandemic , 2020, The Lancet Microbe.

[32]  C. O. Brandão,et al.  Patients with COVID-19 and neurological manifestations show undetectable SARS-CoV-2 RNA levels in the cerebrospinal fluid , 2020, International Journal of Infectious Diseases.

[33]  A. Milewska,et al.  Ratio of IL-8 in CSF Versus Serum Is Elevated in Patients with Unruptured Brain Aneurysm , 2020, Journal of clinical medicine.

[34]  Axel Haverich,et al.  Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. , 2020, The New England journal of medicine.

[35]  Paolo Fusar-Poli,et al.  Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic , 2020, The Lancet Psychiatry.

[36]  G. Ottaviani,et al.  The emerging spectrum of cardiopulmonary pathology of the coronavirus disease 2019 (COVID-19): Report of 3 autopsies from Houston, Texas, and review of autopsy findings from other United States cities , 2020, Cardiovascular Pathology.

[37]  Y. Huang,et al.  SARS-CoV-2 Detected in Cerebrospinal Fluid by PCR in a Case of COVID-19 Encephalitis , 2020, Brain, Behavior, and Immunity.

[38]  J. McArthur,et al.  Neurological manifestations associated with COVID-19: a review and a call for action , 2020, Journal of Neurology.

[39]  Holger Moch,et al.  Endothelial cell infection and endotheliitis in COVID-19 , 2020, The Lancet.

[40]  P. Lewczuk,et al.  S1 guidelines “lumbar puncture and cerebrospinal fluid analysis” (abridged and translated version) , 2020, Neurological Research and Practice.

[41]  Leucine-Rich Glioma-Inactivated Protein 1 , 2020, Definitions.

[42]  T. Witte,et al.  Reiber’s Diagram for Kappa Free Light Chains: The New Standard for Assessing Intrathecal Synthesis? , 2019, Diagnostics.

[43]  H. Reiber,et al.  Diagnostic relevance of free light chains in cerebrospinal fluid - The hyperbolic reference range for reliable data interpretation in quotient diagrams. , 2019, Clinica chimica acta; international journal of clinical chemistry.

[44]  J. Lewerenz,et al.  Cerebrospinal Fluid Findings in Patients With Autoimmune Encephalitis—A Systematic Analysis , 2019, Front. Neurol..

[45]  T. Ganzenmueller,et al.  The Influence of Blood Contamination on Cerebrospinal Fluid Diagnostics , 2019, Front. Neurol..

[46]  F. Paul,et al.  Myelinoclastic diffuse sclerosis (Schilder’s disease) is immunologically distinct from multiple sclerosis: results from retrospective analysis of 92 lumbar punctures , 2019, Journal of Neuroinflammation.

[47]  S. Friis,et al.  Cerebrospinal fluid pro-inflammatory cytokines differentiate parkinsonian syndromes , 2018, Journal of Neuroinflammation.

[48]  F. Fazekas,et al.  Systematic Review: Syndromes, Early Diagnosis, and Treatment in Autoimmune Encephalitis , 2018, Front. Neurol..

[49]  Jacqueline Palace,et al.  MOG encephalomyelitis: international recommendations on diagnosis and antibody testing , 2018, Journal of Neuroinflammation.

[50]  J. Dalmau,et al.  Antibody-Mediated Encephalitis. , 2018, The New England journal of medicine.

[51]  F. Paul,et al.  Baló’s concentric sclerosis is immunologically distinct from multiple sclerosis: results from retrospective analysis of almost 150 lumbar punctures , 2018, Journal of Neuroinflammation.

[52]  Publisher's Note , 2018, Anaesthesia.

[53]  F. Paul,et al.  Pattern II and pattern III MS are entities distinct from pattern I MS: evidence from cerebrospinal fluid analysis , 2017, Journal of Neuroinflammation.

[54]  F. Cendes,et al.  Interferon-γ Is Associated with Cerebral Atrophy in Systemic Lupus Erythematosus , 2017, Neuroimmunomodulation.

[55]  R. Lefaucheur,et al.  Absence of Pleocytosis in Cerebrospinal Fluid does not Exclude Herpes Simplex Virus Encephalitis in Elderly Adults , 2015, Journal of the American Geriatrics Society.

[56]  J. Speck,et al.  Oligoclonal restriction of antiviral immunoreaction in oligoclonal band‐negative MS patients , 2015, Acta neurologica Scandinavica.

[57]  A. Mert,et al.  Herpes simplex virus encephalitis: clinical manifestations, diagnosis and outcome in 106 adult patients. , 2014, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[58]  S. Jarius,et al.  Aquaporin‐4 Antibodies (NMO‐IgG) as a Serological Marker of Neuromyelitis Optica: A Critical Review of the Literature , 2013, Brain pathology.

[59]  A. Chaudhuri,et al.  EFNS‐ENS guidelines for the use of PCR technology for the diagnosis of infections of the nervous system , 2012, European journal of neurology.

[60]  S. Jarius,et al.  Usefulness of antibody index assessment in cerebrospinal fluid from patients negative for total-IgG oligoclonal bands , 2012, Fluids and Barriers of the CNS.

[61]  M. Buttmann,et al.  Intrathecal, Polyspecific Antiviral Immune Response in Oligoclonal Band Negative Multiple Sclerosis , 2012, PloS one.

[62]  F. Paul,et al.  Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients , 2012, Journal of Neuroinflammation.

[63]  A. Berthele Laboratory Diagnosis in Neurology , 2012 .

[64]  R. Bergamaschi,et al.  Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: Results from 211 lumbar punctures , 2011, Journal of the Neurological Sciences.

[65]  H. Meinck,et al.  Qualitative and quantitative evidence of anti-glutamic acid decarboxylase-specific intrathecal antibody synthesis in patients with stiff person syndrome , 2010, Journal of Neuroimmunology.

[66]  K. Wandinger,et al.  Standardized method for the detection of antibodies to aquaporin-4 based on a highly sensitive immunofluorescence assay employing recombinant target antigen , 2010, Journal of the Neurological Sciences.

[67]  A. Ludolph,et al.  Hypercapnia is a Possible Determinant of the Function of the Blood-Cerebrospinal Fluid Barrier in Amyotrophic Lateral Sclerosis , 2010, Neurochemical Research.

[68]  D. Janowitz,et al.  Spontaneous intracerebral hemorrhage in a patient with multiple sclerosis and tumefactive demyelinating lesion , 2009, Multiple sclerosis.

[69]  J. Sejvar,et al.  The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[70]  A. Vincent,et al.  CSF findings in patients with voltage gated potassium channel antibody associated limbic encephalitis , 2008, Journal of the Neurological Sciences.

[71]  R. Voltz,et al.  Qualitative evidence of Ri specific IgG-synthesis in the cerebrospinal fluid from patients with paraneoplastic neurological syndromes , 2008, Journal of the Neurological Sciences.

[72]  Yao-Hsu Yang,et al.  Autoantibodies against human epithelial cells and endothelial cells after severe acute respiratory syndrome (SARS)‐associated coronavirus infection , 2005, Journal of medical virology.

[73]  F. Graus,et al.  Qualitative evidence of anti-Yo-specific intrathecal antibody synthesis in patients with paraneoplastic cerebellar degeneration , 2003, Journal of Neuroimmunology.

[74]  C. Glaser,et al.  Patients with suspected herpes simplex encephalitis: rethinking an initial negative polymerase chain reaction result. , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[75]  J. Losy,et al.  Early TNF‐α levels correlate with ischaemic stroke severity , 2001 .

[76]  M. Hennerici,et al.  Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries , 2001, Journal of neurology, neurosurgery, and psychiatry.

[77]  H. Reiber Cerebrospinal fluid - physiology, analysis and interpretation of protein patterns for diagnosis of neurological diseases , 1998, Multiple sclerosis.

[78]  H. Reiber,et al.  The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis , 1998, Multiple sclerosis.

[79]  J. Frederiksen,et al.  Intrathecal synthesis of virus-specific oligoclonal IgG, and of free kappa and free lambda oligoclonal bands in acute monosymptomatic optic neuritis. Comparison with brain MRI , 1998, Multiple sclerosis.

[80]  C. Sindic,et al.  The intrathecal synthesis of virus-specific oligoclonal IgG in multiple sclerosis , 1994, Journal of Neuroimmunology.

[81]  G. Bernardi,et al.  Cerebrospinal fluid in the diagnosis of multiple sclerosis: a consensus report. , 1994, Journal of neurology, neurosurgery, and psychiatry.

[82]  H. Reiber Flow rate of cerebrospinal fluid (CSF) — A concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases , 1994, Journal of the Neurological Sciences.

[83]  Minoru Harada,et al.  Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients , 1994, Neuroscience Letters.

[84]  P. Kragsbjerg,et al.  Tumor Necrosis Factor-α (TNFα) in Cerebrospinal Fluid from Patients with Meningitis of Different Etiologies: High Levels of TNFα Indicate Bacterial Meningitis , 1993 .

[85]  L. Simchowitz,et al.  Lactic acid secretion by human neutrophils. Evidence for an H+ + lactate- cotransport system , 1992, The Journal of general physiology.

[86]  B. Siesjö,et al.  Brain Acidosis in Experimental Pneumococcal Meningitis , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[87]  M. Maravic,et al.  Correlation of lactic acid level, cell count and cytology in cerebrospinal fluid of patients with bacterial and non‐bacterial meningitis , 1988, Acta neurologica Scandinavica.

[88]  Wolfgang Walz,et al.  Lactate production and release in cultured astrocytes , 1988, Neuroscience Letters.

[89]  R. Fishman,et al.  Effects of leukocytes on brain metabolism in granulocytic brain edema , 1977 .

[90]  F. Plum,et al.  Independence of blood and cerebrospinal fluid lactate. , 1967, Archives of neurology.

[91]  F. Plum,et al.  Blood and cerebrospinal fluid lactate during hyperventilation. , 1967, The American journal of physiology.

[92]  G. Akman-Demir,et al.  The MRZ reaction as a highly specific marker of multiple sclerosis: re-evaluation and structured review of the literature , 2016, Journal of Neurology.

[93]  O. Stuve,et al.  Immunopathogenesis of neuromyelitis optica. , 2014, Advances in immunology.

[94]  C. Klötzsch,et al.  Leitlinien für Diagnostik und Therapie in der Neurologie , 2012 .

[95]  M. Orth,et al.  CSF interleukin 6 – a useful biomarker of meningitis in adults?/Liquor Interleukin 6 – ein sinnvoller Biomarker für die Meningitis beim Erwachsenen , 2011 .

[96]  H. Reiber,et al.  The diagnostic significance of antibody specificity indices in multiple sclerosis and herpes virus induced diseases of the nervous system , 2004, The clinical investigator.

[97]  J. Losy,et al.  Early TNF-alpha levels correlate with ischaemic stroke severity. , 2001, Acta neurologica Scandinavica.

[98]  P. Riederer,et al.  Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. , 1994, Neuroscience letters.

[99]  P. Kragsbjerg,et al.  Tumor necrosis factor-alpha (TNF alpha) in cerebrospinal fluid from patients with meningitis of different etiologies: high levels of TNF alpha indicate bacterial meningitis. , 1993, The Journal of infectious diseases.

[100]  S. Mukerji,et al.  Lactate release from cultured astrocytes and neurons: A comparison , 1988, Glia.

[101]  B. Statland,et al.  CSF lactate in diseases of the CNS. , 1983, Archives of internal medicine.