A data mining approach to dinoflagellate clustering according to sterol composition: correlations with evolutionary history

This study examined the sterol compositions of 102 dinoflagellates using clustering and cluster validation techniques, as a means of determining the relatedness of the organisms. In addition, dinoflagellate sterol-based relationships were compared statistically to 18S rDNA-based phylogenetic relationships using the Mantel test. Our results indicated that the examined dinoflagellates formed six clusters based on sterol composition and that several, but not all, dinoflagellate genera, which formed discrete clusters in the 18S rDNA-based phylogeny, shared similar sterol compositions. This and other correspondences suggest that the sterol compositions of dinoflagellates are explained, to a certain extent, by the evolutionary history of this lineage.

[1]  Jeffrey D. Leblond,et al.  Phylogenetic relationship of Alexandrium monilatum (Dinophyceae) to other Alexandrium species based on 18S ribosomal RNA gene sequences , 2006 .

[2]  Shauna A. Murray,et al.  AMPHIDINIUM REVISITED. I. REDEFINITION OF AMPHIDINIUM (DINOPHYCEAE) BASED ON CLADISTIC AND MOLECULAR PHYLOGENETIC ANALYSES 1 , 2004 .

[3]  Susanne Menden-Deuer,et al.  Molecular data and the evolutionary history of dinoflagellates , 2004 .

[4]  W. Rijpstra,et al.  Sterols of four dinoflagellates from the genus Prorocentrum , 1999 .

[5]  Lora E Fleming,et al.  Literature Review of Florida Red Tide: Implications for Human Health Effects. , 2004, Harmful algae.

[6]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[7]  Hidetoshi Shimodaira,et al.  Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling , 2004, math/0508602.

[8]  L. Goad,et al.  Identification of 27-nor-(24R)-24-methylcholesta-5,22-dien-3β-ol and brassicasterol as the major sterols of the marine dinoflagellateGymnodinium simplex , 1982, Lipids.

[9]  Jeffrey D. Leblond,et al.  Fatty acid and sterol composition of two evolutionarily closely related dinoflagellate morphospecies from cold Scandinavian brackish and freshwaters , 2006 .

[10]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[11]  Guy N. Brock,et al.  clValid , an R package for cluster validation , 2008 .

[12]  Ramakant Sharma,et al.  Phylogeny Estimation and Hypothesis Testing using Maximum Likelihood , 2003 .

[13]  Peter D. Nichols,et al.  PIGMENTS, FATTY ACIDS, AND STEROLS OF THE TOXIC DINOFLAGELLATE GYMNODINIUM CATENATUM 1 , 1991 .

[14]  S. Blackburn,et al.  THE FATTY ACID AND STEROL COMPOSITION OF FIVE MARINE DINOFLAGELLATES , 1999 .

[15]  Jeffrey D. Leblond,et al.  Sterols of the heterotrophic dinoflagellate, pfiesteria piscicida (dinophyceae): is there a lipid biomarker? 1 , 2004 .

[16]  Douglas B. Kell,et al.  Computational cluster validation in post-genomic data analysis , 2005, Bioinform..

[17]  Maktoob Alam,et al.  STEROL DISTRIBUTION IN THE GENUS HETEROCAPSA (PYRRHOPHYTA) 1 , 1984 .

[18]  Jun Zhang,et al.  Cluster validation for unsupervised stochastic model-based image segmentation , 1994, Proceedings of 1st International Conference on Image Processing.

[19]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[20]  René-Édouard Claparède,et al.  Etudes sur les infusoires et les rhizopodes , 1860 .

[21]  J. Volkman,et al.  Sterols in microorganisms , 2002, Applied Microbiology and Biotechnology.

[22]  G. Boyer,et al.  NOVEL STEROLS OF THE TOXIC DINOFLAGELLATE KARENIA BREVIS (DINOPHYCEAE): A DEFENSIVE FUNCTION FOR UNUSUAL MARINE STEROLS? 1 , 2003, Journal of phycology.

[23]  Kamran Shalchian-Tabrizi,et al.  Extensive dinoflagellate phylogenies indicate infrequent marine-freshwater transitions. , 2007, Molecular phylogenetics and evolution.

[24]  Joshua D. Knowles,et al.  Exploiting the Trade-off - The Benefits of Multiple Objectives in Data Clustering , 2005, EMO.

[25]  Jeffrey D. Leblond,et al.  A SURVEY OF THE STEROL COMPOSITION OF THE MARINE DINOFLAGELLATES KARENIA BREVIS, KARENIA MIKIMOTOI, AND KARLODINIUM MICRUM: DISTRIBUTION OF STEROLS WITHIN OTHER MEMBERS OF THE CLASS DINOPHYCEAE1 , 2002 .

[26]  D. Anderson,et al.  Sterols of the Syndinian Dinoflagellate Amoebophrya sp., a Parasite of the Dinoflagellate Alexandrium tamarense (Dinophyceae) , 2006, The Journal of eukaryotic microbiology.

[27]  Hidetoshi Shimodaira,et al.  Pvclust: an R package for assessing the uncertainty in hierarchical clustering , 2006, Bioinform..

[28]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[29]  Carl Djerassi,et al.  Sterols with unusual nuclear unsaturation from three cultured marine dinoflagellates , 1981 .

[30]  Sandhya Dwarkadas,et al.  Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference , 2002, Bioinform..

[31]  M. Alam,et al.  Dinoflagellate sterols I: Sterol composition of the dinoflagellates of Gonyaulax species , 1979, Steroids.

[32]  Peter D. Nichols,et al.  ANTARCTIC DISTRIBUTION, PIGMENT AND LIPID COMPOSITION, AND MOLECULAR IDENTIFICATION OF THE BRINE DINOFLAGELLATE POLARELLA GLACIALIS (DINOPHYCEAE) 1 , 2004 .

[33]  R. B. Johns,et al.  The fatty acid and sterol composition of two marine dinoflagellates , 1984 .

[34]  B. Efron,et al.  Bootstrap confidence levels for phylogenetic trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G. Hallegraeff A review of harmful algal blooms and their apparent global increase , 1993 .

[36]  Debashish Bhattacharya,et al.  A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[38]  J. Huelsenbeck Testing a covariotide model of DNA substitution. , 2002, Molecular biology and evolution.

[39]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[40]  R. B. Johns,et al.  THE LIPID COMPOSITION OF THORACOSPHAERA HEIMII: EVIDENCE FOR INCLUSION IN THE DINOPHYCEAE 1 , 1983 .

[41]  Geoffrey Eglinton,et al.  Lipid composition of the marine dinoflagellate Scrippsiella trochoidea , 1988 .

[42]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[43]  Carl Djerassi,et al.  Sterols of the cultured dinoflagellate Pyrocystis lunula , 1982, Steroids.

[44]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[45]  R. Pistocchi,et al.  INVESTIGATION OF 4‐METHYL STEROLS FROM CULTURED DINOFLAGELLATE ALGAL STRAINS , 1997 .

[46]  Debashish Bhattacharya,et al.  A Three-Gene Dinoflagellate Phylogeny Suggests Monophyly of Prorocentrales and a Basal Position for Amphidinium and Heterocapsa , 2007, Journal of Molecular Evolution.

[47]  Stefan Schouten,et al.  Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids , 1999 .