Confronting Prior Convictions: On Issues of Prior Sensitivity and Likelihood Robustness in Bayesian Analysis

In this review we explore issues of the sensitivity of Bayes estimates to the prior and form of the likelihood. With respect to the prior, we argue that non-Bayesian analyses also incorporate prior information, illustrate that the Bayes posterior mean and the frequentist maximum likelihood estimator are often asymptotically equivalent, review a simple computational strategy for analyzing sensitivity to the prior in practice, and finally document the potentially important role of the prior in Bayesian model comparison. With respect to issues of likelihood robustness, we review a variety of computational strategies for significantly expanding the maintained sampling model, including the use of finite Gaussian mixture models and models based on Dirichlet process priors.

[1]  Sujit K. Ghosh,et al.  Bayesian unit-root tests for Stochastic Volatility models , 2009 .

[2]  Dale J. Poirier,et al.  Intermediate Statistics and Econometrics: A Comparative Approach , 1995 .

[3]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing: Rossi/Bayesian Statistics and Marketing , 2006 .

[4]  Michael A. West,et al.  BAYESIAN MODEL ASSESSMENT IN FACTOR ANALYSIS , 2004 .

[5]  J. Berger The case for objective Bayesian analysis , 2006 .

[6]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[7]  P. Müller,et al.  Bayesian Meta‐analysis for Longitudinal Data Models Using Multivariate Mixture Priors , 2003, Biometrics.

[8]  N. Shephard,et al.  Stochastic volatility with leverage: Fast and efficient likelihood inference , 2007 .

[9]  J. Geweke,et al.  Bayesian Treatment of the Independent Student- t Linear Model , 1993 .

[10]  T. Lancaster An Introduction to Modern Bayesian Econometrics , 2004 .

[11]  Dani Gamerman,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 1997 .

[12]  Purushottam W. Laud,et al.  Bayesian Nonparametric Inference for Random Distributions and Related Functions , 1999 .

[13]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[14]  Nicholas G. Polson,et al.  Inference for nonconjugate Bayesian Models using the Gibbs sampler , 1991 .

[15]  S. MacEachern,et al.  A semiparametric Bayesian model for randomised block designs , 1996 .

[16]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[17]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[18]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[19]  Hedibert Freitas Lopes,et al.  Parsimonious Bayesian Factor Analysis when the Number of Factors is Unknown , 2010 .

[20]  Jean-Michel Marin,et al.  On resolving the Savage–Dickey paradox , 2009, 0910.1452.

[21]  M. Bartlett A comment on D. V. Lindley's statistical paradox , 1957 .

[22]  Peter E. Rossi,et al.  A Non-Parametric Bayesian Approach to the Instrumental Variable Problem , 2006 .

[23]  Gary Koop,et al.  Bayesian Econometric Methods , 2007 .

[24]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[25]  John Geweke,et al.  Interpretation and inference in mixture models: Simple MCMC works , 2007, Comput. Stat. Data Anal..

[26]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[27]  John Geweke,et al.  Contemporary Bayesian Econometrics and Statistics: Geweke/Contemporary Bayesian Econometrics and Statistics , 2005 .

[28]  Manabu Asai,et al.  Bayesian analysis of stochastic volatility models with mixture-of-normal distributions , 2009, Mathematics and Computers in Simulation.

[29]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[30]  N. Shephard,et al.  Markov chain Monte Carlo methods for stochastic volatility models , 2002 .

[31]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[32]  Eric Zivot,et al.  Bayesian and Classical Approaches to Instrumental Variables Regression , 2003 .

[33]  Fernando A. Quintana,et al.  Nonparametric Bayesian data analysis , 2004 .

[34]  L. Wasserman,et al.  Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio , 1995 .

[35]  J. Heckman,et al.  Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice , 2003, SSRN Electronic Journal.

[36]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[37]  Petros Dellaportas,et al.  Multivariate mixtures of normals with unknown number of components , 2006, Stat. Comput..

[38]  Nicholas G. Polson,et al.  Particle Learning and Smoothing , 2010, 1011.1098.

[39]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[40]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[41]  Yasuhiro Omori,et al.  Leverage, heavy-tails and correlated jumps in stochastic volatility models , 2007, Comput. Stat. Data Anal..

[42]  Ajay Jasra,et al.  Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modeling , 2005 .

[43]  Peter E. Rossi,et al.  Bayesian analysis of stochastic volatility models with fat-tails and correlated errors , 2004 .

[44]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[45]  M. Clyde,et al.  Mixtures of g Priors for Bayesian Variable Selection , 2008 .

[46]  L. Wasserman,et al.  A Reference Bayesian Test for Nested Hypotheses and its Relationship to the Schwarz Criterion , 1995 .

[47]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing , 2005 .

[48]  Nicholas G. Polson,et al.  Particle learning for general mixtures , 2010 .

[49]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[50]  Hedibert F. Lopes,et al.  Particle filters and Bayesian inference in financial econometrics , 2011 .

[51]  T. Kloek,et al.  Bayesian estimates of equation system parameters, An application of integration by Monte Carlo , 1976 .

[52]  Carlos M. Carvalho,et al.  Particle Learning for Sequential Bayesian Computation , 2012 .

[53]  Mark F. J. Steel,et al.  Posterior analysis of stochastic volatility models with flexible tails , 1998 .

[54]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[55]  David Ríos Insua,et al.  Robust Bayesian analysis , 2000 .

[56]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[57]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[58]  Barr Rosenberg. The Behavior of Random Variables with Nonstationary Variance and the Distribution of Security Prices , 1972 .

[59]  C. Robert,et al.  Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .

[60]  D. Freedman On the Bernstein-von Mises Theorem with Infinite Dimensional Parameters , 1999 .

[61]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[62]  M. Stephens Dealing with label switching in mixture models , 2000 .

[63]  Victor H. Lachos,et al.  Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions , 2010, Comput. Stat. Data Anal..

[64]  W. J. Hall,et al.  Approximating Priors by Mixtures of Natural Conjugate Priors , 1983 .

[65]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[66]  J. Pitman,et al.  Size-biased sampling of Poisson point processes and excursions , 1992 .

[67]  Nicholas G. Polson,et al.  MCMC Methods for Continuous-Time Financial Econometrics , 2003 .

[68]  J. Geweke,et al.  Bayesian reduced rank regression in econometrics , 1996 .

[69]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[70]  Sylvia Frühwirth-Schnatter,et al.  Finite Mixture and Markov Switching Models , 2006 .