Local resilience of almost spanning trees in random graphs

We prove that for fixed integer D and positive reals α and γ, there exists a constant C0 such that for all p satisfying p(n) ≥ C0/n, the random graph G(n,p) asymptotically almost surely contains a copy of every tree with maximum degree at most D and at most (1 - α)n vertices, even after we delete a (1/2 - γ)-fraction of the edges incident to each vertex. The proof uses Szemeredi's regularity lemma for sparse graphs and a bipartite variant of the theorem of Friedman and Pippenger on embedding bounded degree trees into expanding graphs. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2011 © 2011 Wiley Periodicals, Inc.

[1]  Wojciech Samotij,et al.  Large Bounded Degree Trees in Expanding Graphs , 2010, Electron. J. Comb..

[2]  Benny Sudakov,et al.  Local resilience of graphs , 2007, Random Struct. Algorithms.

[3]  Penny E. Haxell Tree embeddings , 2001, J. Graph Theory.

[4]  Domingos Dellamonica,et al.  On the Resilience of Long Cycles in Random Graphs , 2008, Electron. J. Comb..

[5]  Yoshiharu Kohayakawa,et al.  Almost Spanning Subgraphs of Random Graphs After Adversarial Edge Removal , 2009, Combinatorics, Probability and Computing.

[6]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[7]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[8]  Michael Krivelevich,et al.  On two Hamilton cycle problems in random graphs , 2008 .

[9]  Domingos Dellamonica,et al.  An algorithmic Friedman--Pippenger theorem on tree embeddings and applications to routing , 2006, SODA '06.

[10]  János Komlós,et al.  Proof of a Packing Conjecture of Bollobás , 1995, Combinatorics, Probability and Computing.

[11]  Joel Friedman,et al.  Expanding graphs contain all small trees , 1987, Comb..

[12]  A. Shapira,et al.  Extremal Graph Theory , 2013 .

[13]  Noga Alon,et al.  Embedding nearly-spanning bounded degree trees , 2007, Comb..

[14]  Noga Alon,et al.  UNIVERSALITY AND TOLERANCE (Extended Abstract) , 2000 .

[15]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[16]  Yoshiharu Kohayakawa,et al.  Universality and tolerance , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[17]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[18]  Benny Sudakov,et al.  Resilient Pancyclicity of Random and Pseudorandom Graphs , 2009, SIAM J. Discret. Math..