Ultraviolet to optical diffuse sky emission as seen by the Hubble Space Telescope Faint Object Spectrograph

We present an analysis of the blank sky spectra observed with the Faint Object Spectrograph on board the Hubble Space Telescope. We study the diffuse sky emission from ultraviolet to optical wavelengths, which is composed of the zodiacal light (ZL), diffuse Galactic light (DGL), and residual emission. The observations were performed toward 54 fields distributed widely over the sky, with the spectral coverage from 0.2 to 0.7 um. In order to avoid contaminating light from the earthshine, we use the data collected only in orbital nighttime. The observed intensity is decomposed into the ZL, DGL, and residual emission, in eight photometric bands spanning our spectral coverage. We found that the derived ZL reflectance spectrum is flat in the optical, which indicates major contribution of C-type asteroids to the interplanetary dust (IPD). In addition, the ZL reflectance spectrum has an absorption feature at ~0.3 um. The shape of the DGL spectrum is consistent with those found in earlier measurements and model predictions. While the residual emission contains a contribution from the extragalactic background light, we found that the spectral shape of the residual looks similar to the ZL spectrum. Moreover, its optical intensity is much higher than that measured from beyond the IPD cloud by Pioneer10/11, and also than that of the integrated galaxy light. These findings may indicate the presence of an isotropic ZL component, which is missed in the conventional ZL models.

[1]  M. Eracleous,et al.  The Speedy Magnetic Propeller in the Cataclysmic Variable AE Aquarii , 1996 .

[2]  Measurements of the Diffuse Ultraviolet Background and the Terrestrial Airglow with the Space Telescope Imaging Spectrograph , 2000, astro-ph/0004147.

[3]  T. Mukai,et al.  HIGH-RESOLUTION IMAGING OF THE GEGENSCHEIN AND THE GEOMETRIC ALBEDO OF INTERPLANETARY DUST , 2013, 1302.3316.

[4]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[5]  H. Ferguson,et al.  Ultraviolet Galaxy Counts from Space Telescope Imaging Spectrograph Observations of the Hubble Deep Fields , 2000 .

[6]  Richard G. Arendt,et al.  Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints , 2003, astro-ph/0312641.

[7]  L. Cambresy,et al.  The Cosmic Infrared Background at 1.25 and 2.2 Microns Using DIRBE and 2MASS: A Contribution Not Due to Galaxies? , 2001 .

[8]  L. A. Antonelli,et al.  Very-High-Energy Gamma Rays from a Distant Quasar: How Transparent Is the Universe? , 2008, Science.

[9]  C. A. Oxborrow,et al.  Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.

[10]  Jayant Murthy,et al.  MAPPING THE DIFFUSE ULTRAVIOLET SKY WITH THE GALAXY EVOLUTION EXPLORER , 2010 .

[11]  Toshio Matsumoto,et al.  Rocket-borne observations of the zodiacal light in the near-infrared wavelengths. , 1995 .

[12]  S. Bowyer,et al.  Discovery and imaging of a Galactic cirrus cloud with the far ultraviolet space telescope , 1995 .

[13]  Lucia Pozzetti,et al.  Deep galaxy counts, extragalactic background light and the stellar baryon budget , 1999, astro-ph/9907315.

[14]  Min Gyu Kim,et al.  MEASUREMENTS OF THE MEAN DIFFUSE GALACTIC LIGHT SPECTRUM IN THE 0.95–1.65 μm BAND FROM CIBER , 2015, 1503.04926.

[15]  Mark S. Robinson,et al.  Ultraviolet spectral reflectance properties of common planetary minerals , 2008 .

[16]  Toshio Matsumoto,et al.  Low-Resolution Spectrum of the Extragalactic Background Light with the AKARI InfraRed Camera , 2013, 1307.6740.

[17]  V. V. Hristov,et al.  OBSERVATIONS OF THE NEAR-INFRARED SPECTRUM OF THE ZODIACAL LIGHT WITH CIBER , 2010, 1004.5445.

[18]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[19]  S. Oyabu,et al.  COSMIC OPTICAL BACKGROUND: THE VIEW FROM PIONEER 10/11 , 2011, Proceedings of the International Astronomical Union.

[20]  T. Totani,et al.  Diffuse Extragalactic Background Light versus Deep Galaxy Counts in the Subaru Deep Field: Missing Light in the Universe? , 2001, astro-ph/0102328.

[21]  Douglas P. Finkbeiner,et al.  A Full-Sky Hα Template for Microwave Foreground Prediction , 2003, astro-ph/0301558.

[22]  H. Kataza,et al.  MEASUREMENTS OF DIFFUSE SKY EMISSION COMPONENTS IN HIGH GALACTIC LATITUDES AT 3.5 AND 4.9 μm USING DIRBE AND WISE DATA , 2015, 1512.08072.

[23]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[24]  E. L. Wright,et al.  Number Counts at 3 μm < λ < 10 μm from the Spitzer Space Telescope , 2004 .

[25]  E. L. Wright,et al.  Tentative Detection of the Cosmic Infrared Background at 2.2 and 3.5 Microns Using Ground-based and Space-based Observations , 1999, astro-ph/9909428.

[26]  E. L. Wright,et al.  DIRBE Minus 2MASS: Confirming the CIRB in 40 New Regions at 2.2 and 3.5 μm , 2007, 0704.1498.

[27]  W. Duley,et al.  Ultraviolet Absorption in Amorphous Carbons: Polycyclic Aromatic Hydrocarbons and the 2175 Å Extinction Feature , 2004 .

[28]  L. Bianchi,et al.  GALEX OBSERVATIONS OF DIFFUSE UV RADIATION AT HIGH SPATIAL RESOLUTION FROM THE SANDAGE NEBULOSITY , 2008, 0807.0189.

[29]  P. Pilewskie,et al.  Recent variability of the solar spectral irradiance and its impact on climate modelling , 2012, 1303.5577.

[30]  M. V. Fernandes,et al.  Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with H.E.S.S. , 2012, 1212.3409.

[31]  M. Kawada,et al.  Infrared Telescope in Space Observations of the Near-Infrared Extragalactic Background Light , 2004, astro-ph/0411593.

[32]  Hideo Ohashi,et al.  Simulation of space weathering of planet-forming materials: Nanosecond pulse laser irradiation and proton implantation on olivine and pyroxene samples , 1999 .

[33]  J. L. Weinberg,et al.  Zodiacal light and the asteroid belt: The view from Pioneer 10 , 1974 .

[34]  H. Murakami,et al.  IRTS Observation of the Near-Infrared Spectrum of the Zodiacal Light , 1996 .

[35]  G. Rieke,et al.  The Cosmic Infrared Background Resolved by Spitzer. Contributions of Mid-Infrared Galaxies to the Far-Infrared Background. , 2006, astro-ph/0603208.

[36]  Jayant Murthy,et al.  Mapping the Diffuse Ultraviolet Sky with GALEX , 2010 .

[37]  Richard P. Binzel,et al.  MUSES‐C target asteroid (25143) 1998 SF36: A reddened ordinary chondrite , 2001 .

[38]  S. Matsuura,et al.  FIRST DETECTION OF GALACTIC LATITUDE DEPENDENCE OF NEAR-INFRARED DIFFUSE GALACTIC LIGHT FROM DIRBE RENALYSIS , 2016, 1603.07732.

[39]  M. Mapelli,et al.  Background radiation from sterile neutrino decay and reionization , 2005, astro-ph/0508413.

[40]  B. Peterson,et al.  DIFFUSE GALACTIC LIGHT IN THE FIELD OF THE TRANSLUCENT HIGH GALACTIC LATITUDE CLOUD MBM32 , 2013, 1303.0938.

[41]  M. Köhler,et al.  Dust in the solar system and in extra-solar planetary systems , 2006 .

[42]  F. DeMeo,et al.  INTERPLANETARY DUST PARTICLES AS SAMPLES OF ICY ASTEROIDS , 2015 .

[43]  L. Colina,et al.  The 0.12-2.5 micron Absolute Flux Distribution of the Sun for Comparison With Solar Analog Stars , 1996 .

[44]  M. C. Cooper,et al.  Extragalactic background light inferred from AEGIS galaxy-SED-type fractions , 2010, 1103.4534.

[45]  S. Andrews,et al.  MEASUREMENTS OF EXTRAGALACTIC BACKGROUND LIGHT FROM THE FAR UV TO THE FAR IR FROM DEEP GROUND- AND SPACE-BASED GALAXY COUNTS , 2016, 1605.01523.

[46]  R. Bernstein,et al.  The Optical Extragalactic Background Light: Revisions and Further Comments , 2007 .

[47]  Stuart Bowyer,et al.  The 1997 reference of diffuse night sky brightness , 1998 .

[48]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[49]  Sophia A. Khan,et al.  DETECTION OF THE COSMIC FAR-INFRARED BACKGROUND IN AKARI DEEP FIELD SOUTH , 2010, 1002.3674.

[50]  Bradley M. Peterson,et al.  A Search for Ultrarapid Microvariability in the Seyfert Galaxy NGC 7469 with the Hubble Space Telescope , 1998 .

[51]  E. al.,et al.  Number Counts of GALEX Sources in FUV (1530A) and NUV (2310A) Bands , 2004, astro-ph/0411317.

[52]  L. Bianchi,et al.  GALEX OBSERVATIONS OF DIFFUSE ULTRAVIOLET EMISSION FROM DRACO , 2010, 1009.3348.

[53]  R. Arendt,et al.  The Near-Infrared Background: Interplanetary Dust or Primordial Stars? , 2005, astro-ph/0508262.

[54]  K. Lumme,et al.  Photometric properties of zodiacal light particles , 1985 .

[55]  Sho Sasaki,et al.  Pulse-laser irradiation experiments of Murchison CM2 chondrite for reproducing space weathering on C-type asteroids , 2015 .

[56]  E. L. Wright DIRBE minus 2MASS: Confirming the Cosmic Infrared Background at 2.2 Microns , 2000, astro-ph/0004192.

[57]  E. L. Wright,et al.  Detection of the Cosmic Infrared Background at 2.2 and 3.5 Microns Using DIRBE Observations , 1999, astro-ph/9912523.

[58]  M. Zolensky,et al.  Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7 μm, 3 μm, and UV absorption strengths in comparison with carbonaceous chondrites , 1996 .

[59]  A. Noutsos,et al.  A low level of extragalactic background light as revealed by γ-rays from blazars , 2005, Nature.

[60]  A. Mickaelian DSS1/DSS2 astrometry for 1101 First Byurakan Survey blue stellar objects: Accurate positions and other results , 2004 .

[61]  Timothy D. Brandt,et al.  THE SPECTRUM OF THE DIFFUSE GALACTIC LIGHT: THE MILKY WAY IN SCATTERED LIGHT , 2011, 1109.4175.

[62]  M. Jura Observational consequences of scattering clouds above the galactic disk. , 1979 .

[63]  Astronomy,et al.  Infrared Emission from the Radio Supernebula in NGC 5253: A Proto-Globular Cluster? , 2001, astro-ph/0103101.

[64]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. II. Model of the Interplanetary Dust Cloud , 1997, astro-ph/9806250.

[65]  K. Tsumura,et al.  REANALYSIS OF THE NEAR-INFRARED EXTRAGALACTIC BACKGROUND LIGHT BASED ON THE IRTS OBSERVATIONS , 2015, 1501.01359.

[66]  T. Onaka,et al.  MODELING OF THE ZODIACAL EMISSION FOR THE AKARI/IRC MID-INFRARED ALL-SKY DIFFUSE MAPS , 2016, 1601.05553.

[67]  H. Kataza,et al.  DERIVATION OF A LARGE ISOTOPIC DIFFUSE SKY EMISSION COMPONENT AT 1.25 AND 2.2 μm FROM THE COBE/DIRBE DATA , 2015, 1508.02806.

[68]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[69]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections , 1998, astro-ph/9806167.

[70]  Hongu Yang,et al.  ORIGIN OF INTERPLANETARY DUST THROUGH OPTICAL PROPERTIES OF ZODIACAL LIGHT , 2015, 1509.07184.