A Bayesian method for probable surface reconstruction and decimation

We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface reconstruction, the method simultaneously smooths noisy regions while enhancing features such as corners. When applied to surface decimation, it finds models that closely approximate the original mesh when rendered. The method is applied in the context of computer animation where it finds decimations that minimize the visual error even under nonrigid deformations.

[1]  Frédo Durand,et al.  Non-iterative, feature-preserving mesh smoothing , 2003, ACM Trans. Graph..

[2]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[3]  Szymon Rusinkiewicz,et al.  Spacetime stereo: a unifying framework for depth from triangulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Daniel Cohen-Or,et al.  Bilateral mesh denoising , 2003 .

[6]  Assaf Zomet,et al.  Learning to Perceive Transparency from the Statistics of Natural Scenes , 2002, NIPS.

[7]  Chandrajit L. Bajaj,et al.  Anisotropic diffusion of surfaces and functions on surfaces , 2003, TOGS.

[8]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[9]  R. Glowinski,et al.  Conjugate gradient algorithms and finite element methods , 2004 .

[10]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, SIGGRAPH 2004.

[11]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[12]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[13]  Norberto F. Ezquerra,et al.  Bag-of-Particles as a Deformable Model , 2002, VisSym.

[14]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, ACM Trans. Graph..

[15]  Szymon Rusinkiewicz,et al.  Spacetime Stereo: A Unifying Framework for Depth from Triangulation , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Pedro V. Sander,et al.  Geometry videos: a new representation for 3D animations , 2003, SCA '03.

[17]  Mathieu Desbrun,et al.  Variational shape approximation , 2004, SIGGRAPH 2004.

[18]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[19]  Anath Fischer,et al.  Adaptive reconstruction of freeform objects with 3D SOM neural network grids , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[20]  Mark Meyer,et al.  Anisotropic Feature-Preserving Denoising of Height Fields and Bivariate Data , 2000, Graphics Interface.

[21]  Marc Alexa,et al.  Representing Animations by Principal Components , 2000, Comput. Graph. Forum.

[22]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[23]  Richard Szeliski,et al.  From splines to fractals , 1989, SIGGRAPH '89.

[24]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[25]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[26]  Ross T. Whitaker,et al.  Geometric surface smoothing via anisotropic diffusion of normals , 2002, IEEE Visualization, 2002. VIS 2002..

[27]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000 .

[28]  Hans-Peter Seidel,et al.  Neural meshes: statistical learning based on normals , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[29]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[30]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[31]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[32]  Richard Szeliski,et al.  Surface modeling with oriented particle systems , 1992, SIGGRAPH.

[33]  Wilfried Philips,et al.  An Advanced Color Representation for Lossy Compression of CMYK Prepress Images , 2000, Comput. Graph. Forum.

[34]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.